Crates & Testing

Rust, In Theory and in Practice

CAS CS 392 M1



Overview

We'll look at Rust's module system, which 1s
used to organize projects and encapsulate
imp lementation details

We'll talk briefly about testing

(We'll talk about what's next in the course)



Organizing Crates




Crates

What 1s a crate? What 1s a package?

There are two kinds of crates: binary and library
Binary crate must have main function

A package 1s a bundle of crates, zero or one
library create and zero or more binary crates

(the file is for the package)



Crate Conventions

Where do you put binary/library crates?

Cargo assumes src/main.rs 1S a binary crate and
src/lib.rs 1s the library crate

each file 1n src/bin corresponds to the root of
a binary crate


http://main.rs
http://lib.rs

Modules

What 1s a module?

A module 1s a collection of functions/types 1n
a user—defined namespace

A library crate 1s composed of modules which
encapsulate parts of the code Dbase

(we haven't used modules all that much so far)



Namespaces

What 1s the point of a module?

A module creates a namespace for a collection
of shared functionalities

Modules have mechanisms for making only parts
of the functionality public

This 1s generally good for code hygilene



The Compiler's View

How does the compiler look through modules?
1. Start at the root of a crate

2. find code for declared modules (mod mod name)
1. 1nl1ine
2. Src/mod _name.rs
3. src/mod name/mod.rs (less idiomatic)

3. Recurse, do the same for submodules


http://mod_name.rs
http://mod.rs

Paths

How do I refer to a function i1n a module?
By 1t's path:

modulel: :submodule2: : fun_name



Public vs. Private

How do I hide implementation details from the user of my crate?
Modules and code within modules 1s considered private by default
pub mod mod _name makes (sub)module public

pub fn fun_name(...) ... makes a function public

We can even use pub on particular parts of a structure/enumeration

Making something public essentially tells you which paths are
valid



The "use” Keyword

Paths can get verbose, we can use the use keyword to bring functions/
types 1into scope so that we don't need to use the whole path

(We've been doing this)

A couple tricks:

» use modl::submod2::{funl, fun2} 1is used to bring multiple functions
into scope

» use modl::submod2::funl as fun2 1s used to bring into scope with
different name



Separating into Different Files

How do I organize my code across multiple files?
It's just about knowing where to put things

» mod_name goes 1n src/mod_name.rs

» submod _name goes 1n src/mod_name/submod_ name.rs

(My personal approach: start with one file, break
into multiple files as necessary)


http://mod_name.rs

demo



Testing



Overview

Rust has a pretty 1mpressive easy-to—-use buillt-
1in testing framework

1. Create a module and add the attribute
#[cfg(test)]

2. Add functions to the module with the #[test]
attribute, using the various assert macros



Assert Macros

assert!(e) checks 1f e 1s true

assert _eq!(el, e2) checks el and e2 are equal
(type must implement PartialEq)

assert _ne!(el, e2) you can guess...



Organizing Tests

Where should I put tests?

1. Anywhere! You can put a testing module
anywhere you can put a module (with the
#[cfg(test)] attribute)

2. In the tests directory (only has access to
public functions)



Testing Cheatsheet

cargo test cargo command to run tests

cargo test partial_name run a subset of tests

cargo test —— ——ignored run only ignored tests

#[cfg(test)] attribute to label a module for testing

#test] attribute to label a function for testing

#[ignore] attribute to ignore a test

#[should_panic] attribute to say that a test will panic

assert!(e) macro that checks if e is true

assert_eq!(el, e2) macro that checks el and e2 are equal (type must implement PartialEq)

assert_nel(el, e2) macro that checks if el and e2 are not equal (type must implement PartialEq)



demo



