
CAS CS 392 M1

Crates & Testing
Rust, In Theory and in Practice

Overview

We'll look at Rust's module system, which is
used to organize projects and encapsulate
implementation details

We'll talk briefly about testing

(We'll talk about what's next in the course)

Organizing Crates

Crates

What is a crate? What is a package?

There are two kinds of crates: binary and library

Binary crate must have main function

A package is a bundle of crates, zero or one
library create and zero or more binary crates
(the file is for the package)

Crate Conventions

Where do you put binary/library crates?

Cargo assumes src/main.rs is a binary crate and
src/lib.rs is the library crate

each file in src/bin corresponds to the root of
a binary crate

http://main.rs
http://lib.rs

Modules

What is a module?

A module is a collection of functions/types in
a user-defined namespace

A library crate is composed of modules which
encapsulate parts of the code base

(we haven't used modules all that much so far)

Namespaces

What is the point of a module?

A module creates a namespace for a collection
of shared functionalities

Modules have mechanisms for making only parts
of the functionality public

This is generally good for code hygiene

The Compiler's View

How does the compiler look through modules?

1. Start at the root of a crate

2. find code for declared modules (mod mod_name)
1. inline
2. src/mod_name.rs
3. src/mod_name/mod.rs (less idiomatic)

3. Recurse, do the same for submodules

http://mod_name.rs
http://mod.rs

Paths

How do I refer to a function in a module?

By it's path:

module1::submodule2::fun_name

Public vs. Private

How do I hide implementation details from the user of my crate?

Modules and code within modules is considered private by default

pub mod mod_name makes (sub)module public

pub fn fun_name(...) ... makes a function public

We can even use pub on particular parts of a structure/enumeration

Making something public essentially tells you which paths are
valid

The "use" Keyword

Paths can get verbose, we can use the use keyword to bring functions/
types into scope so that we don't need to use the whole path

(We've been doing this)

A couple tricks:

» use mod1::submod2::{fun1, fun2} is used to bring multiple functions
into scope

» use mod1::submod2::fun1 as fun2 is used to bring into scope with
different name

Separating into Different Files

How do I organize my code across multiple files?

It's just about knowing where to put things

» mod_name goes in src/mod_name.rs

» submod_name goes in src/mod_name/submod_name.rs

(My personal approach: start with one file, break
into multiple files as necessary)

http://mod_name.rs

demo

Testing

Overview

Rust has a pretty impressive easy-to-use built-
in testing framework

1. Create a module and add the attribute
#[cfg(test)]

2. Add functions to the module with the #[test]
attribute, using the various assert macros

Assert Macros

assert!(e) checks if e is true

assert_eq!(e1, e2) checks e1 and e2 are equal
(type must implement PartialEq)

assert_ne!(e1, e2) you can guess...

Organizing Tests

Where should I put tests?

1. Anywhere! You can put a testing module
anywhere you can put a module (with the
#[cfg(test)] attribute)

2. In the tests directory (only has access to
public functions)

cargo test cargo command to run tests

cargo test partial_name run a subset of tests

cargo test -- --ignored run only ignored tests

#[cfg(test)] attribute to label a module for testing

#[test] attribute to label a function for testing

#[ignore] attribute to ignore a test

#[should_panic] attribute to say that a test will panic

assert!(e) macro that checks if e is true

assert_eq!(e1, e2) macro that checks e1 and e2 are equal (type must implement PartialEq)

assert_ne!(e1, e2) macro that checks if e1 and e2 are not equal (type must implement PartialEq)

Testing Cheatsheet

demo

