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Outline

The Punchline: Rust's type/borrow system catches 
many common concurrency bugs at compile time 

Today we'll talk about: 

» Creating threads to run code at the same time 

» Passing messages between threads 

» Sharing state across threads



Threads



Processes and Threads

Operating systems run a 
programs in a process 

A process can have parts that 
are run independently using 
threads 

Typically an OS exposes an 
API to spawn threads within a 
process

https://commons.wikimedia.org/wiki/File:Multithreaded_process.svg



The Challenge

Running multiple tasks at the same time can be great 
for efficiency, but it introduces complexity 

There are many bugs that can occur due to interleaved 
threads or inconsistent access order, i.e., race 
conditions 

Note: Safe Rust ensures no data races but does not 
ensure general race condition safety (e.g., deadlocks 
are "safe")



Data Race
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sequential concurrentA data race occurs when: 

» Multiple threads are 
accessing the same 
data 

» At least one is 
mutating 

» There is no mechanism 
for synchronization



Deadlock (A Picture)
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sequential concurrent

Deadlock 
occurs when 
two threads 
are waiting 
on each other 
and the 
process hangs



Thread Model

Rust uses a 1:1 model for threads, one user 
thread per one OS thread. There's also: 

» Many:1 (green threads) has many user threads 
for a single OS thread 

» Many:Many has many user threads to a pool of 
OS threads



Spawning Threads

thread::spawn takes a closure, which define what the thread should do 

Important. Spawning a thread does not guarantee that the 
corresponding computation will finish 

The main thread (in which the new thread is spawn) may finish and 
drop any unfinished computation

    thread::spawn(|| { 
        for i in 0..100 { 
            println!("{i}") 

        } 
    }); 



Joining Threads

We can "wait" for a spawned thread to finish using .join() 

Joining blocks the main thread until the joined thread is 
done 

Note. joining takes ownership of the handle (we can't, for 
example, extract the underlying thread after we've joined)

    let handle = thread::spawn(|| { 
        for i in 0..100 { 
            println!("{i}") 

        } 
    }); 
    let _ = handle.join(); 



Move Closures

We often need to move data into closures when working with threads 
(we need to make sure data doesn't get dropped before the thread is 
done) 

Since closures infer how much borrowing needs to be down we often 
need the move keyword to force closures to take ownership of the 
values it uses

    let v = vec![1, 2, 3]; 

    let handle1 = thread::spawn(move || { 
        println!("{}", v[0]); 
    }); 



Type of Spawning

The lifetime bound on F ensures that we can't 
borrow things that are stack allocated by the 
main thread 

This necessitates move in most cases (even with 
joins)

pub fn spawn<F, T>(f: F) -> JoinHandle<T> 
where 
    F: FnOnce() -> T + Send + 'static, 
    T: Send + 'static, 



Message Passing



High-Level

"Do not communicate by sharing memory; instead, share 
memory by communicating." 

In Rust, we can create multi-producer single-consumer 
channels for passing messages between threads

    let (tx, rx) = std::sync::mpsc::channel(); 



demo 
(simple example)



Message passing and Ownership

Sending a message transfers ownership 

The type system can expression that a message 
should not be used after being sent

    thread::spawn(move || { 
        let val = String::from("hi"); 
        tx.send(val).unwrap(); 
        println!("val is {val}"); 
    }); 



Shared-State Concurrency



High-Level

» Sometimes we do want shared-state concurrency. We 
can do this with Arc (atomic reference counting) 

» If we want mutable shared-state, we can use an 
"internal mutability" pattern with Mutex

    let counter = Arc::new(Mutex::new(0)); 

    let counter = Arc::clone(&counter); 
    let handle = thread::spawn(move || { 
        let mut num = counter.lock().unwrap(); 
        *num += 1; 
    }); 



Comparison with Rc and RefCell

Rc<T> is to Arc<T> as RefCell<T> is to Mutex<T> 

RefCell and Mutex both allow for "internal 
mutability" 

Rc + RefCell leads to memory leaks and Arc + 
Mutex leads to deadlocks



The Takeaways

The compelling part of concurrency in Rust is not that it 
handles concurrency better than in other languages, but that 
the concerns of concurrency fits into the ownership paradigm 
very well 

When we pass a value as a message, we shouldn't be able to 
work with it anymore. That can be represented as 
transferring ownership once the value is sent 

We should be careful and explicit when sharing data across 
threads, that's built into the way we use Rust



The Takeaways

Concurrency is hard 

What we've shown is the thread-level interface 
exposed by Rust. In reality, you probably wouldn't 
use this unless you really needed control 

Many folks have thought about this problem, and 
have built nice libraries, e.g., rayon is a 
popular crate for parallel iterators



Workshop



The Tasks

» Write a function parallel_sum that takes the sum of the 
elements in a vector by breaking the vector into k chunks 
and creating a thread for each chunk to sum. Benchmark 
this against the sequential sum and sum with rayon 

» Work on assignment 6. If you finish extend with thread 
pool according to the tutorial given in the book 

» Write a safe Rust program with deadlock (For an additional 
challenge, write an unsafe Rust program with a data race)


