
CAS CS 392 M1

Concurrency
Rust, In Theory and in Practice

Outline

The Punchline: Rust's type/borrow system catches
many common concurrency bugs at compile time

Today we'll talk about:

» Creating threads to run code at the same time

» Passing messages between threads

» Sharing state across threads

Threads

Processes and Threads

Operating systems run a
programs in a process

A process can have parts that
are run independently using
threads

Typically an OS exposes an
API to spawn threads within a
process

https://commons.wikimedia.org/wiki/File:Multithreaded_process.svg

The Challenge

Running multiple tasks at the same time can be great
for efficiency, but it introduces complexity

There are many bugs that can occur due to interleaved
threads or inconsistent access order, i.e., race
conditions

Note: Safe Rust ensures no data races but does not
ensure general race condition safety (e.g., deadlocks
are "safe")

Data Race

x1 y
x1 x1 + 1
y x1

←
←

←
x2 y
x2 x2 + 1
y x2

←
←

←

{ y 1 }↦

{ y 3 }↦

x1 y
x1 x1 + 1
x2 y
y x1

←
←
←

←
x2 x2 + 1
y x2

←
←

{ y 1 }↦

{ y 2 }↦

sequential concurrentA data race occurs when:

» Multiple threads are
accessing the same
data

» At least one is
mutating

» There is no mechanism
for synchronization

Deadlock (A Picture)

x1 y.lock()
*x1 2
w1 z.lock()
*w1 2
x1.unlock()
w1.unlock()

←
←

←
←

{ y 1, z 1 }↦ ↦

{ y 3, z 3 }↦ ↦

{ y 1, z 1 }↦ ↦

x2 z.lock()
*x2 3
w2 y.lock()
*w2 3
x2.unlock()
w2.unlock()

←
←

←
←

x1 y.lock()
*x1 2
x2 z.lock()
*x2 3
w1 z.lock()
w2 y.lock()
*w1 2
x1.unlock()
w1.unlock()

←
←

←
←

←
←

←

*w2 3
x2.unlock()
w2.unlock()

←

stuck...

sequential concurrent

Deadlock
occurs when
two threads
are waiting
on each other
and the
process hangs

Thread Model

Rust uses a 1:1 model for threads, one user
thread per one OS thread. There's also:

» Many:1 (green threads) has many user threads
for a single OS thread

» Many:Many has many user threads to a pool of
OS threads

Spawning Threads

thread::spawn takes a closure, which define what the thread should do

Important. Spawning a thread does not guarantee that the
corresponding computation will finish

The main thread (in which the new thread is spawn) may finish and
drop any unfinished computation

 thread::spawn(|| {
 for i in 0..100 {
 println!("{i}")

 }
 });

Joining Threads

We can "wait" for a spawned thread to finish using .join()

Joining blocks the main thread until the joined thread is
done

Note. joining takes ownership of the handle (we can't, for
example, extract the underlying thread after we've joined)

 let handle = thread::spawn(|| {
 for i in 0..100 {
 println!("{i}")

 }
 });
 let _ = handle.join();

Move Closures

We often need to move data into closures when working with threads
(we need to make sure data doesn't get dropped before the thread is
done)

Since closures infer how much borrowing needs to be down we often
need the move keyword to force closures to take ownership of the
values it uses

 let v = vec![1, 2, 3];

 let handle1 = thread::spawn(move || {
 println!("{}", v[0]);
 });

Type of Spawning

The lifetime bound on F ensures that we can't
borrow things that are stack allocated by the
main thread

This necessitates move in most cases (even with
joins)

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where
 F: FnOnce() -> T + Send + 'static,
 T: Send + 'static,

Message Passing

High-Level

"Do not communicate by sharing memory; instead, share
memory by communicating."

In Rust, we can create multi-producer single-consumer
channels for passing messages between threads

 let (tx, rx) = std::sync::mpsc::channel();

demo
(simple example)

Message passing and Ownership

Sending a message transfers ownership

The type system can expression that a message
should not be used after being sent

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap();
 println!("val is {val}");
 });

Shared-State Concurrency

High-Level

» Sometimes we do want shared-state concurrency. We
can do this with Arc (atomic reference counting)

» If we want mutable shared-state, we can use an
"internal mutability" pattern with Mutex

 let counter = Arc::new(Mutex::new(0));

 let counter = Arc::clone(&counter);
 let handle = thread::spawn(move || {
 let mut num = counter.lock().unwrap();
 *num += 1;
 });

Comparison with Rc and RefCell

Rc<T> is to Arc<T> as RefCell<T> is to Mutex<T>

RefCell and Mutex both allow for "internal
mutability"

Rc + RefCell leads to memory leaks and Arc +
Mutex leads to deadlocks

The Takeaways

The compelling part of concurrency in Rust is not that it
handles concurrency better than in other languages, but that
the concerns of concurrency fits into the ownership paradigm
very well

When we pass a value as a message, we shouldn't be able to
work with it anymore. That can be represented as
transferring ownership once the value is sent

We should be careful and explicit when sharing data across
threads, that's built into the way we use Rust

The Takeaways

Concurrency is hard

What we've shown is the thread-level interface
exposed by Rust. In reality, you probably wouldn't
use this unless you really needed control

Many folks have thought about this problem, and
have built nice libraries, e.g., rayon is a
popular crate for parallel iterators

Workshop

The Tasks

» Write a function parallel_sum that takes the sum of the
elements in a vector by breaking the vector into k chunks
and creating a thread for each chunk to sum. Benchmark
this against the sequential sum and sum with rayon

» Work on assignment 6. If you finish extend with thread
pool according to the tutorial given in the book

» Write a safe Rust program with deadlock (For an additional
challenge, write an unsafe Rust program with a data race)

