Concurrency

Rust, In Theory and in Practice

CAS CS 392 M1

Outline

The Punchline: Rust's type/borrow system catches
many common concurrency bugs at compile time

Today we'll talk about:

» Creating threads to run code at the same time
» Passing messages between threads

» Sharing state across threads

Processes and Threads

Operating systems run a Process
programs 1n a process

Thread #1 Thread #2

A process can have parts that
are run 1independently using
threads

Time

Typically an 0S exposes an
API to spawn threads within a

Drocess

https://commons.wikimedia.org/wiki/File:Multithreaded_process.svg

The Challenge

Running multiple tasks at the same time can be great
for efficiency, but 1t introduces complexity

There are many bugs that can occur due to interleaved
threads or i1nconsistent access order, 1.e., race
conditions

Note: Safe Rust ensures no data races but does not
ensure general race condition safety (e.g., deadlocks
are '"safe')

Data Race

A data race occurs when:

»Multiple threads are
accessing the same
data

» At least one 1s
mutating

» There 1s no mechanism
for synchronization

sequential concurrent
{ym~171F 1y~ 11}
X1 « vy X1 « vy
X1 « x1 + 1 X1 « x1 + 1
y <« X1 X2 <« VY
X2 « VY y « X1
X2 « x2 + 1 X2 « x2 + 1
V <« X2 YV « X2

v v

{1y~ 31} 1Yy = 2§

Deadlock (A Picture)

sequential concurrent

{ v —1, z 1 } { Vi1, 2z 1 1

Deadlock * *
1 « vy.lock() X1 <« y.lock()
1 « z.lock() X2 « z.lock()
two threads WL zoc P
1 11 x1.unlock() wl < z.lock()
are waliting XTuntock’) o~y lack() = stuck...
on each other x2 « z.lock() AWl 2
*X2 «— 3 x1.unlock()
and the w2 <« y.lock() wl.unlock()
w2 «— 3 w2 <« 3
process hangs AN 2. unock()
w2.unlock() w2.unlock()

v

1y®m>3, 2~ 3}

Thread Model

Rust uses a 1:1 model for threads, one user
thread per one 0S thread. There's also:

» Many:1 (green threads) has many user threads
for a single 0S thread

» Many:Many has many user threads to a pool of
0S threads

Spawning Threads

thread: :spawn (|| {
for i in 0..100 {
printin! ("{1}")

}
1)

thread: :spawn takes a closure, which define what the thread should do

Important. Spawning a thread does not guarantee that the
corresponding computation will finish

The main thread (in which the new thread is spawn) may finish and
drop any unfinished computation

Joining Threads

let handle = thread::spawn(]|| {
for 1 1in 0..100 {
println! ("{1}")

}
1)
let = handle.join() ;

We can "wait" for a spawned thread to finish using .join()

Joining blocks the main thread until the joined thread 1is
done

Note. joining takes ownership of the handle (we can't, for
example, extract the underlying thread after we've joined)

Move Closures

let v = vec![1, 2, 3]:

let handlel = thread::spawn(move || {
println!("{}", v[0]);
r);

We often need to move data into closures when working with threads

(we need to make sure data doesn't get dropped before the thread is
done)

Since closures infer how much borrowing needs to be down we often

need the move keyword to force closures to take ownership of the
values 1t uses

Type of Spawning

pub fn spawn<kF, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T + Send + 'static,

T: Send + 'static,

The lifetime bound on F ensures that we can't
borrow things that are stack allocated by the
maln thread

This necessitates move in most cases (even with
joins)

Message Passing

High-Level

let (tx, rx) = std::sync::mpsc::channel();

"Do not communicate by sharing memory; 1instead, share
memory by communicating."

In Rust, we can create multi-producer single—-consumer
channels for passing messages between threads

demo

(simple example)

Message passing and Ownership

thread: :spawn(move || { '76
let val = String::from("hi");

tx.send(val).unwrap();
println!("val is {val}");
});

Sending a messaqge transfers ownership

The type system can expression that a message
should not be used after being sent

Shared-State Concurrency

High-Level
let counter = Arc::new(Mutex::new(0)):

let counter = Arc::clone(&counter):

let handle = thread::spawn(move || {
let mut num = counter.lock().unwrap();
num += 1;

) ;

» Sometimes we do want shared-state concurrency. We
can do this with Arc (atomic reference counting)

» If we want mutable shared-state, we can use an
"internal mutability" pattern with Mutex

Comparison with Rc and RefCell

Rc<T> 1s to Arc<T> as RefCell<T> 1s to Mutex<T>

RefCell and Mutex both allow for "internal
mutability"

Rc + RefCell Lleads to memory Lleaks and Arc +
Mutex leads to deadlocks

The Takeaways

The compelling part of concurrency in Rust 1s not that it
handles concurrency better than in other languages, but that
the concerns of concurrency fits i1nto the ownership paradigm
very well

When we pass a value as a message, we shouldn't be able to
work with 1t anymore. That can be represented as
transferring ownership once the value 1s sent

We should be careful and explicit when sharing data across
threads, that's built into the way we use Rust

The Takeaways

Concurrency 1s hard

What we've shown 1s the thread-level 1interface
exposed by Rust. In reality, you probably wouldn't
use this unless you really needed control

Many folks have thought about this problem, and
have built nice libraries, e.g., rayon 1s a
popular crate for parallel 1terators

Workshop

The Tasks

»Write a function parallel _sum that takes the sum of the
elements 1n a vector by breaking the vector into k chunks
and creating a thread for each chunk to sum. Benchmark
this against the sequential sum and sum with rayon

»Work on assignment 6. If you finish extend with thread
pool according to the tutorial given 1n the book

»Write a safe Rust program with deadlock (For an additional
challenge, write an unsafe Rust program with a data race)

