Async Programming

Rust, In Theory and in Practice

CAS CS 392 M1



Motivation

It would be no fun 1if our computer became
useless every time we downloaded or exported

something...

Concurrency and Parallelism allow our computers
to multitask



Concurrency vs. Parallelism

e

concurrent

BT B>

parallel




Blocking Operations

fn read_Lline(&mut self, buf: &mut String) -> Result<usize> 1.0.0 - Source
Reads all bytes until a newline (the OxA byte) is reached, and append them to the provided String buffer.
Previous content of the buffer will be preserved. To avoid appending to the buffer, you need to c'lear it first.

This function will read bytes from the underlying stream until the newline delimiter (the OxA byte) or EOF is found. Once found,
all bytes up to, and including, the delimiter (if found) will be appended to buf.

If successful, this function will return the total number of bytes read.
If this function returns Ok (0) , the stream has reached EOF.

This function is blocking and should be used carefully: it is possible for an attacker to continuously send bytes without ever
sending a newline or EOF. You can use take to limit the maximum number of bytes read.

An operation is blocking if a program cannot
make progress until the operation 1s over



Blocking Operations (A Picture)

Task A

o>

Task B

<>

The process A3 1s blocked by B3 1n this parallel workf low




Asynchronous Programming

async fn get_page(url: &str) —> Option<String>{
regwest::get(url)
.awalt
.0k ()7
text ()
.awalt
.ok()

The async abstraction gives us a way to call
functions 1n a non-blocking way



Futures

"A future 1s a value
that may not be ready
now but will become
ready at some point 1n
the future."”

Futures are 1implemented
via the Future trait

pub trait Future {
type Output;

// Required method
fn poll(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) —> Poll<Self::0utput>;



Polling

pub enum Poll<T> 1
Ready(T),
Pending,

h

The poll function 1s used by asynchronous
runtimes to determine whether or not a future
1s ready to be used

We rarely interact directly with Future::poll



Crates for Asynchronous Programming

[dependencies]

regwest = "0.12"

tokio = { version = "1", features = ["full"] }
futures = "0.3"



async blocks

async {
// within an async block we
// can use the await keyword
// remember: blocks are expressions

// an async block evaluates to a Future



The await keyword

async {
for i in 1..10 {
println!("first task: {i}");
tokio::time: :sleep(
tokio::time::Duration::from millis(500)
) .await;

h

awalt is used within an async block in order to wait for a future

In the we join futures, the await keywords tells the runtime "I'm
waiting, I cede my time until 1t's ready"



Async Runtimes

let rt = tokio::Runtime::new().unwrap();
rt.block on(future)

Futures are lazy. This means that the computation associated
with a future is not run until it is given to a runtime

Rust has many async runtimes, we'll be using tokio for the
examp lLes



Cheatsheet

tokio: :task: :spawn spawn an asychronous task that
starts running immediately

futures::future::join run two futures until they
both finish

futures::future::select run two futures until one
finishes, and then
determine what to do 1n each
case
tok1io::sync::mpsc create a channel for passing messages between
: :unbounded channel futures



demo



The "Invisible State Machine” (Rabbit Hole)

enum PageTitleFuture<'a> {
Initial { url: &'a str },
GetAwaitPoint { url: &'a str },
TextAwaitPoint { response: Response },

h

Since futures are lazy, there's a bunch of data they keep
track of

In particular, we can think of each await as triggering a
transition 1n a state machine



Pinning (Rabbit Hole)

pub struct Pin<Ptr> {
poilnter: Ptr,
}

Sometimes that extra data can lead to self-referential
structures, 1.e., structures that contain pointers to their

own data

This is why we to pin our types when working with futures

(pinning is bizarre, we won't talk much about it)



Workshop



Tasks

Implement a function that gets an webpage and also
prints a message describing how much time has elapsed
(maybe 1 message per second)

Implement a function timeout function, that run a future
for a given time (from the text). Challenge. Take a
closure instead (note: I haven't battle tested this one)

Build a Join structure for the joining two futures (this
meaning using poll)



