
CAS CS 392 M1

Async Programming
Rust, In Theory and in Practice

Motivation

It would be no fun if our computer became
useless every time we downloaded or exported
something...

Concurrency and Parallelism allow our computers
to multitask

Concurrency vs. Parallelism

concurrent

parallel

Blocking Operations

An operation is blocking if a program cannot
make progress until the operation is over

Blocking Operations (A Picture)

The process A3 is blocked by B3 in this parallel workflow

Asynchronous Programming

The async abstraction gives us a way to call
functions in a non-blocking way

async fn get_page(url: &str) -> Option<String>{
 reqwest::get(url)
 .await
 .ok()?
 .text()
 .await
 .ok()
}

Futures

"A future is a value
that may not be ready
now but will become
ready at some point in
the future."

Futures are implemented
via the Future trait

pub trait Future {
 type Output;

 // Required method
 fn poll(
 self: Pin<&mut Self>,
 cx: &mut Context<'_>,
) -> Poll<Self::Output>;
}

Polling

The poll function is used by asynchronous
runtimes to determine whether or not a future
is ready to be used

We rarely interact directly with Future::poll

pub enum Poll<T> {
 Ready(T),
 Pending,
}

Crates for Asynchronous Programming

[dependencies]
reqwest = "0.12"
tokio = { version = "1", features = ["full"] }
futures = "0.3"

async blocks

 async {
 // within an async block we
 // can use the await keyword

 // remember: blocks are expressions

 // an async block evaluates to a Future

 }

The await keyword

await is used within an async block in order to wait for a future

In the we join futures, the await keywords tells the runtime "I'm
waiting, I cede my time until it's ready"

 async {
 for i in 1..10 {
 println!("first task: {i}");
 tokio::time::sleep(
 tokio::time::Duration::from_millis(500)
).await;
 }
 }

Async Runtimes

Futures are lazy. This means that the computation associated
with a future is not run until it is given to a runtime

Rust has many async runtimes, we'll be using tokio for the
examples

 let rt = tokio::Runtime::new().unwrap();
 rt.block_on(future)

Cheatsheet

tokio::task::spawn spawn an asychronous task that
 starts running immediately

futures::future::join run two futures until they
 both finish

futures::future::select run two futures until one
 finishes, and then
 determine what to do in each
 case
tokio::sync::mpsc create a channel for passing messages between
 ::unbounded_channel futures

demo

The "Invisible State Machine" (Rabbit Hole)

Since futures are lazy, there's a bunch of data they keep
track of

In particular, we can think of each await as triggering a
transition in a state machine

enum PageTitleFuture<'a> {
 Initial { url: &'a str },
 GetAwaitPoint { url: &'a str },
 TextAwaitPoint { response: Response },
}

Pinning (Rabbit Hole)

Sometimes that extra data can lead to self-referential
structures, i.e., structures that contain pointers to their
own data

This is why we to pin our types when working with futures

(pinning is bizarre, we won't talk much about it)

pub struct Pin<Ptr> {
 pointer: Ptr,
}

Workshop

Tasks

Implement a function that gets an webpage and also
prints a message describing how much time has elapsed
(maybe 1 message per second)

Implement a function timeout function, that run a future
for a given time (from the text). Challenge. Take a
closure instead (note: I haven't battle tested this one)

Build a Join structure for the joining two futures (this
meaning using poll)

