
CAS CS 392 M1

Unsafe Rust
Rust, In Theory and in Practice

Motivation

We sometimes need a way of shifting some of the analysis from
the compiler to the programmer because:

» "static analysis is conservative"

» "Computer hardware is inherently unsafe"

» FFI is hard

fn swap<T>(a: &mut T, b: &mut T) {
 let temp = *a;
 *a = *b;
 *b = temp;
}

Disclaimer

Most people I've talked to don't use unsafe Rust

It matters a lot in some cases, but it also doesn't
matter at all in most cases

Why care? The interface is fascinating at a PL/
compilers level (and sometimes maybe you'll need it)

Common Misconceptions

unsafe Rust is when you turn off the borrow checker

Using unsafe code in a function makes the whole
function unsafe

fn swap<T>(a: &mut T, b: &mut T) {
 unsafe {
 let temp = *a;
 *a = *b;
 *b = temp;
 }
}

(to be clear, these are not true)

Unsafe is Contractual

Writing unsafe Rust means holding up a contract

You'll be using operations that could break memory safety, and you're
promising to verify using you're own brain (instead of the compiler) that
it doesn't

"trust me, I know what I'm doing"

safety claim

Undefined Behavior (UB)

When you write unsafe Rust, you promise not to cause undefined behavior

What is UB? Who the hell knows...

There's a list, but Rust is a bit cagey. There are a couple obvious ones:

» Data races

» accessing a dangling pointer

» aliasing mutable references

"Superpowers"

Writing unsafe Rust means writing in an unsafe block. Within an
unsafe block you get a couple "superpowers", the two primary ones:

1. Dereference a raw pointer

2. Call other unsafe functions

fn swap<T>(a: &mut T, b: &mut T) {
 let a_ptr = a as *mut T;
 let b_ptr = b as *mut T;
 unsafe {
 let temp = std::ptr::read(a_ptr);
 *a_ptr = std::ptr::read(b_ptr);
 *b_ptr = temp;
 }
}

Raw pointers

Raw pointers are like references except that they:

» ignore borrow rules

» may be unaligned or out of bounds (may not point to valid memory)

» are allowed to be null

» do not have automatic clean-up

 let mut x = 1;
 let y: *const i32 = &x; // coercion
 let y: *mut i32 = &mut x;
 let y = &raw const x; // raw borrow op
 let y = &raw mut x;
 let mut x = Box::new(1);
 let y: *mut i32 = Box::into_raw(x);
 unsafe { let _ = Box::from_raw(y); } // need to drop

Example: Derefing a raw pointer

Reading through a raw pointer requires an unsafe block

Mutating through a mutable raw pointer requires an unsafe block

(Note that creating a raw pointer does not require an unsafe block)

 let mut x = 2;
 let y = &raw mut x;
 unsafe {
 *y += 1;
 }
 assert_eq!(x, 3);

Example: Calling Unsafe Functions
Functions are labeled
unsafe if they have the
potential of causing
undefined behavior if
used incorrectly

It's a contract, you need
to check that all the
safety requirements are
satisfied

demo
(basic examples)

Safe Abtractions

Again, using unsafe does not make the code you
write unsafe

It just means it's on you to make sure it's
safe

demo
(safe abstractions: example from the book)

Miri

Miri is used to detect undefined behavior

(see, interpreters aren't useless)

demo
(swap)

Workshop

Task

» Build your own version of ChunkMut (we'll talk
a bit about this first) Can we use
split_at_mut? Can we do it without unsafe
rust?

» Read Aria Desires's chapter on Miri from Learn
Rust With Entirely Too Many Linked Lists

