Unsafe Rust

Rust, In Theory and in Practice

CAS CS 392 M1

Motivation .70

fn swap<T>(a: &mut T, b: &mut T) {
let temp = *a;
ka = *D;
b = temp;

}

We sometimes need a way of shifting some of the analysis from
the compiler to the programmer because.:

» "static analysis 1s conservative"
» "Computer hardware 1s i1inherently unsafe"

» FFI 1s hard

Disclaimer

Most people I've talked to don't use unsafe Rust

It matters a lot 1n some cases, but 1t also doesn't
matter at all 1n most cases

Why care? The 1interface 1s fascinating at a PL/
compilers level (and sometimes maybe you'll need it)

Common Misconceptions

2,
fn swap<T>(a: &mut T, b: &mut T) {

unsafe {
let temp = *a;
*a = *Db;
b = temp;

}

unsafe Rust is when you turn off the borrow checker

Using unsafe code 1in a function makes the whole
function unsafe

(to be clear, these are not true)

Unsafe iIs Contractual

pub fn push_mut(&mut self, value: T) -> &mut T {

let len = self.len;

if len == self.buf.capacity() {
self.buf.grow_one();

}

unsafe {
let end = self.as_mut_ptr().add(len);
ptr::write(end, value);
self.len = len + 1;

< safety claim

&mut *end

Writing unsafe Rust means holding up a contract

You'll be using operations that could break memory safety, and you're
promising to verify using you're own brain (instead of the compiler) that
1t doesn't

"trust me, I know what I'm doing"

Undefined Behavior (UB)

/\ Warning

The following list is not exhaustive; it may grow or shrink. There is no formal model of Rust's
semantics for what is and is not allowed in unsafe code, so there may be more behavior
considered unsafe. We also reserve the right to make some of the behavior in that list defined in
the future. In other words, this list does not say that anything will definitely always be undefined
in all future Rust version (but we might make such commitments for some list items in the

future).

When you write unsafe Rust, you promise not to cause undefined behavior

What 1s UB? Who the hell knows...

There's a list, but Rust i1s a bit cagey. There are a couple obvious ones:

» Data races
» accessing a dangling pointer

» aliasing mutable references

"Superpowers” *
&mut T, b: &mut T) {

fn swap<T>(a:

let a_ptr = a as xmut T;
let b_ptr = b as *xmut T,
unsafe {

let temp = std::ptr::read(a_ptr);
xa_ptr = std::ptr::read(b_ptr);
*b_ptr = temp;

h

Writing unsafe Rust means writing in an unsafe block. Within an
unsafe block you get a couple "superpowers'", the two primary ones:

1. Dereference a raw pointer

2. Call other unsafe functions

Raw pointers

let mut x = 1;

let y: *xconst 132 = &x; // coercion

let y: *xmut 132 = &mut X;

let y = &raw const x; // raw borrow op

let y = &raw mut X;

let mut x = Box::new(1l);

let y: xmut 132 = Box::into_raw(x);

unsafe { let _ = Box::from_raw(y); } // need to drop

Raw pointers are like references except that they:

» 1gnore borrow rules

» may be unaligned or out of bounds (may not point to valid memory)
»are allowed to be null

» do not have automatic clean-up

Example: Derefing a raw pointer

let mut x = 2;
let y = &raw mut Xx;
unsafe {
xy += 1;
}

assert_eq!(x, 3);
Reading through a raw pointer requires an unsafe block

Mutating through a mutable raw pointer requires an unsafe block

(Note that creating a raw pointer does not require an unsafe block)

Example: Calling Unsafe Functions

Functions are labeled
unsafe 1f they have the
potential of causing
undefined behavior 1f
used 1ncorrectly

It's a contract, you need
to check that all the
safety requirements are
satisfied

Function from_raw_parts_mut E
Since 1.0.0 (const: 1.83.0) - Source

pub const unsafe fn from_raw_parts_mut<'a, T>(
data: *mut T,
len: usize,

) => &'a mut [T]

v Performs the same functionality as from_raw_parts, except that a mutable slice is r¢

Safety

Behavior is undefined if any of the following conditions are violated:

e data must be non-null, valid for both reads and writes for len * size_of: :<T>
aligned. This means in particular:

o The entire memory range of this slice must be contained within a single allocatic
allocations.

o data must be non-null and aligned even for zero-length slices or slices of ZSTs.
optimizations may rely on references (including slices of any length) being align
other data. You can obtain a pointer that is usable as data for zero-length slices

* data must point to len consecutive properly initialized values of type T.

demo

(basic examples)

Safe Abtractions

Again, using unsafe does not make the code you
write unsafe

It just means 1t's on you to make sure 1t's
safe

demo

(safe abstractions: example from the book)

O O
rust-lang/miri
An interpreter for Rust's mid-level intermediate

representation
AL 321 () 158 W 6k T 401
Contributors |ssues Stars Forks

Miri is used to detect undefined behavior

(see, 1nterpreters aren't useless)

demo

(swap)

Workshop

Task

» Build your own version of ChunkMut (we'll talk
a bit about this first) Can we use
split_at mut? Can we do it without unsafe
rust?

» Read Aria Desires's chapter on Miri from Learn
Rust With Entirely Too Many Linked Lists

