Macros

Rust, In Theory and in Practice

CAS CS 392 M1

High Level

Macros are used for metaprogramming, i.e., the
generation of code at compile-time, e.q.,

» #[derive(...)]
»printtn! ("{}, {}", 1, 2)

»vec![1l, 2, 3]

Benefits and Drawbacks

macro _rules! vec {
() => (

$crate: :vec::Vec::new()
) .

($elem:expr; $n:expr) => (
$crate::vec::from elem($elem, $n)

Benefit: More control to the programmer, can write
DSLs, variadic functions, etc.

Downside: More control to the programmer, macros can be
hard to read and debug, they can make code less clear

Declarative Macros

#[macro export]
macro rules! vec {
($(C $x:expr),*) => {
{

let mut temp vec = Vec::new(),;
5 (

temp vec.push($x);
)*

temp vec

Also called "macros by example"

You specify a small grammar that you want the rule to
parse, and what you want the data in the 1input to expand to

Fragment Specifiers

#[macro export]
macro rules! vec {

($C $x:expr),*) => {...}

Fragment specifiers describe the kind of data
that can be parsed:

block, expr, 1dent, 1item, literal, pat, path,
stmt, tt (token tree), ty (type), vis
(visibility qualifier)

Repetitions

#[macro export]
macro rules! vec {

($C $x:expr),*) => {...}

MacroRepOp
0,0 .. @ “ ; | =T

()0

Patterns can include repetitions and separators:
(%) zero or more
(+) one or more

(?) zero or one

Use Cases

use regex macro. .regex,

for 1tem 1n my iter {
// this 1s still only compiled once!
1f regex! ("[0-9a-T]+").1s match(item) {
// frobnicate

;
;

Declarative Macros are useful for snippets of
repeated patterns

Simple examples: regex _macro and lazy static

https://docs.rs/regex-macro/0.3.0/regex_macro/
https://docs.rs/lazy_static/1.5.0/lazy_static/

daemo

(rforth, simplified)

Procedural Macros

#[proc macro]
pub fn do something(input: TokenStream) -> TokenStream {...}

The same as declarative macros 1n principle

But you're working with code as a piece of data and
vou have the full power of Rust

The sky's the limit

syn and quote

syn 1S a crate that can parse TokenSteams 1into
Rust ADTs

quote 1s a crate that will convert user—-written
program (with embedded values) into a
TokenStream

Derivable Traits

#[derive(Clone, Debug)]
struct Matrix<T> {
shape: (usize, usize),
data: Vec<T>,

They can also be used to implement derivable
traits

Thils requires the #lproc_macro_derive(...)] attribute

daemo

(functors, simplified)

Use Cases

/* { "Monday" -> true, ... } x/
/* { "Monday" -> false, ...} */

let alice_cal: HashMap<String, bool>
let bob_cal: HashMap<String, bool>
let mut count = 0;
for (day, available) in alice_cal {
if available && xbob_cal.get(&day).unwrap() {
count += 1;

b
}

println!("Overlapping days: {}", count);

Fig. 1. Rust code that computes the overlapping number of days in two calendars.

let alice_cal: HashMap<String, Secret<lat::A,bool>> = /*x { "Monday" -> Secret(true), ... } */
let bob_cal: HashMap<String, Secret<lat::B,bool>> = /* { "Monday" -> Secret(false), ...} */
let mut count = secret_block!(lat::AB { wrap_secret(@) });
for (day, available) in alice_cal {
secret_block! (lat::AB {
if unwrap_secret(available) &&
*unwrap_secret_ref(::std::option::Option::unwrap(
::std::collections: :HashMap: :get (&bob_cal, &day))) {
*unwrap_secret_mut_ref (& ut count) += 1;

}
1;
}

println! ("Overlapping days: {}", count.declassify());

use builtin: :*:

verus! {
fn mn(x: 132,
ensures

m
m

y // verus!

example.rs

$./verus example.rs
note: verifying root module

error: postcondition not satisfied
-=> example.rs:12:1

11

12
13

15
16
17

I

I

I

I

I
14 |
I

I

I
18 |
I

at the end of the function body
error: aborting due to previous error

verification results:: verified: @ errors: 1

Procedural macros as useful for larger—-scale generation

code

Two 1interesting examples: Cocoon and Verus

of

Workshop Task

ocaml adt! {

type Foo =
| Bar of 132 * 132
| Baz
| Buzz of 132

Write a declarative macro that allows you to write a
(non-recursive) enumeration using 0Caml syntax

Challenge: Write a procedural macro, and handle recursion

