
CAS CS 392 M1

Macros
Rust, In Theory and in Practice

High Level

Macros are used for metaprogramming, i.e., the
generation of code at compile-time, e.g.,

» #[derive(...)]

» println!("{}, {}", 1, 2)

» vec![1, 2, 3]

Benefits and Drawbacks

Benefit: More control to the programmer, can write
DSLs, variadic functions, etc.

Downside: More control to the programmer, macros can be
hard to read and debug, they can make code less clear

macro_rules! vec {
 () => (
 $crate::vec::Vec::new()
);
 ($elem:expr; $n:expr) => (
 $crate::vec::from_elem($elem, $n)
 ...

Declarative Macros

Also called "macros by example"

You specify a small grammar that you want the rule to
parse, and what you want the data in the input to expand to

#[macro_export]
macro_rules! vec {
 ($($x:expr),*) => {
 {
 let mut temp_vec = Vec::new();
 $(
 temp_vec.push($x);
)*
 temp_vec
 }
 };
}

Fragment Specifiers

Fragment specifiers describe the kind of data
that can be parsed:

block, expr, ident, item, literal, pat, path,
stmt, tt (token tree), ty (type), vis

(visibility qualifier)

#[macro_export]
macro_rules! vec {
 ($($x:expr),*) => {...}

Repetitions

Patterns can include repetitions and separators:

(*) zero or more

(+) one or more

(?) zero or one

#[macro_export]
macro_rules! vec {
 ($($x:expr),*) => {...}

Use Cases

Declarative Macros are useful for snippets of
repeated patterns

Simple examples: regex_macro and lazy_static

use regex_macro::regex;

for item in my_iter {
 // this is still only compiled once!
 if regex!("[0-9a-f]+").is_match(item) {
 // frobnicate
 }
}

https://docs.rs/regex-macro/0.3.0/regex_macro/
https://docs.rs/lazy_static/1.5.0/lazy_static/

demo
(rforth, simplified)

Procedural Macros

The same as declarative macros in principle

But you're working with code as a piece of data and
you have the full power of Rust

The sky's the limit

#[proc_macro]
pub fn do_something(input: TokenStream) -> TokenStream {...}

syn and quote

syn is a crate that can parse TokenSteams into
Rust ADTs

quote is a crate that will convert user-written
program (with embedded values) into a
TokenStream

Derivable Traits

They can also be used to implement derivable
traits

This requires the #[proc_macro_derive(...)] attribute

#[derive(Clone, Debug)]
struct Matrix<T> {
 shape: (usize, usize),
 data: Vec<T>,
}

demo
(functors, simplified)

Use Cases

Procedural macros as useful for larger-scale generation of
code

Two interesting examples: Cocoon and Verus

Workshop Task

Write a declarative macro that allows you to write a
(non-recursive) enumeration using OCaml syntax

Challenge: Write a procedural macro, and handle recursion

ocaml_adt! {
 type Foo =
 | Bar of i32 * i32
 | Baz
 | Buzz of i32
}

