salt0: Straight Line Programs

CS392-M1: Rust, In Practice and in Theory

1 Syntax

The following is the BNF specification for the syntax of salt0. We fix an arbitrary set $\mathcal V$ of variables.

x	(variables, \mathcal{V})
n	(integers, \mathbb{Z})
$v \coloneqq n \mid ()$	(values, Val)
$e := n \mid () \mid x \mid e + e$	(expressions, \mathcal{E})
s := let $x = e$	(statements, \mathcal{S})
$p ::= \{s ; \} e$	(programs, \mathcal{P})
t ::= i32 ()	(types, \mathcal{T})

2 Typing

There are three kinds of typing judgments:

$$\Gamma \vdash e : t$$
 (expressions)
 $\Gamma \vdash s \dashv \Gamma$ (statments)
 $\Gamma \vdash p : t$ (programs)

The meta-variable Γ stands for a typing context (a.k.a., static environment), which we will take to be a map from variables to types (i.e., a map of the form $\mathcal{V} \mapsto \mathcal{T}$). Note that statements do not have types, but they can affect the state of the context (i.e., they can have side-effects). The following are the typing rules for salto.

$$\frac{n \in \mathbb{Z}}{\Gamma \vdash n : \mathtt{i32}} \text{ (int)} \qquad \frac{\Gamma \vdash () : ()}{\Gamma \vdash () : ()} \text{ (unit)} \qquad \frac{(x \mapsto t) \in \Gamma}{\Gamma \vdash x : t} \text{ (var)}$$

$$\frac{\Gamma \vdash e_1 : \mathtt{i32} \qquad \Gamma \vdash e_2 : \mathtt{i32}}{\Gamma \vdash e_1 + e_2 : \mathtt{i32}} \text{ (add)}$$

$$\frac{x \notin \mathsf{dom}(\Gamma) \qquad \Gamma \vdash e : t}{\Gamma \vdash \mathsf{let} \ x = e \dashv \Gamma[x \mapsto t]} \text{ (let)}$$

$$\frac{\Gamma_1 \vdash s \dashv \Gamma_2 \qquad \Gamma_2 \vdash p : t}{\Gamma_1 \vdash s : p : t} \text{ (prog)}$$

3 Evaluation

There are three kinds of (big-step) evaluation judgments:

$$\langle S, e \rangle \Downarrow v$$
 (expressions)
 $\langle S, s \rangle \Downarrow S$ (statements)
 $\langle S, p \rangle \Downarrow v$ (programs)

The meta-variable S stands for a store (a.k.a., dynamic environment), which we will take to be a map from variables to values (i.e., a map of the form $V \mapsto Val$). Note that statements do not have values, but they can affect the state of the store. The following are the evaluation rules for salto.

$$\frac{n \in \mathbb{Z}}{\langle S, n \rangle \Downarrow n} \text{ (int)} \qquad \frac{\langle S, c \rangle \Downarrow c \rangle}{\langle S, c \rangle \Downarrow v_1} \text{ (var)}$$

$$\frac{\langle S, e_1 \rangle \Downarrow v_1 \qquad \langle S, e_2 \rangle \Downarrow v_2}{\langle S, e_1 + e_2 \rangle \Downarrow v_1 + v_2} \text{ (add)}$$

$$\frac{\langle S, e \rangle \Downarrow v}{\langle S, \text{let } x = e \rangle \Downarrow S[x \mapsto v]} \text{ (let)}$$

$$\frac{\langle S_1, s \rangle \Downarrow S_2 \qquad \langle S_2, p \rangle \Downarrow v}{\langle S_1, s \rangle \Downarrow v} \text{ (prog)}$$

4 Reduction

There are three kinds of reduction judgments:

$$\langle S, e \rangle \longrightarrow \langle S, e \rangle$$
 (expressions)
 $\langle S, s \rangle \longrightarrow \langle S, s \rangle$ (statements)
 $\langle S, p \rangle \longrightarrow \langle S, p \rangle$ (programs)

We will extend our syntax to include holes and to allow for evaluating statements:

$$s := \mathbf{let} \ x = e \mid \bullet \qquad \qquad \text{(statements)}$$

$$e \llbracket \ \rrbracket ::= \llbracket \ \rrbracket \mid e \llbracket \ \rrbracket + e \mid e + e \llbracket \ \rrbracket \qquad \qquad \text{(holed expressions)}$$

$$s \llbracket \ \rrbracket ::= \mathbf{let} \ x = e \llbracket \ \rrbracket \qquad \qquad \text{(holed statement)}$$

$$p \llbracket \ \rrbracket ::= \{s \llbracket \ \rrbracket \ ; \} \mid \{s \ ; \} e \llbracket \ \rrbracket \qquad \qquad \text{(holed programs)}$$

The • statement is a placeholder for statements that have been fully evaluated. The following are the reduction rules for salto.

$$\frac{(x \mapsto v) \in S}{\langle S, x \rangle \longrightarrow \langle S, v \rangle} \text{ (var)}$$

$$\frac{\langle S, v_1 + v_2 \rangle \longrightarrow \langle S, v_1 + v_2 \rangle}{\langle S, \text{ let } x = v \rangle \longrightarrow \langle S[x \mapsto v], \bullet \rangle} \text{ (let)}$$

$$\frac{\langle S_1, s_1 \rangle \longrightarrow \langle S_2, s_2 \rangle}{\langle S_1, s_1; p \rangle \longrightarrow \langle S_2, s_2; p \rangle} (\operatorname{prog}_1)$$

$$\frac{\langle S, \bullet; p \rangle \longrightarrow \langle S, p \rangle}{\langle S_1, e_1 \rangle \longrightarrow \langle S_2, e_2 \rangle} (\operatorname{hole})$$

$$\frac{\langle S_1, e_1 \rangle \longrightarrow \langle S_2, e_2 \rangle}{\langle S_1, \sigma[e_1]| \rangle \longrightarrow \langle S_2, \sigma[e_2]| \rangle} (\operatorname{hole})$$

5 Meta-Theory

These first two theorems give a correspondence between the evaluation rules and the reduction rules. We will appeal to these theorems to justify using reduction rules to help use visualize the evaluation process.

Theorem. (Operational Adequacy) For any store S, program p, and value v, if $\langle S, p \rangle \Downarrow v$, then there is store S' such that $\langle S, p \rangle \longrightarrow^* \langle S', v \rangle$.

Theorem. (Operational Soundness) For any stores S and S', program p, and value v, if $\langle S, p \rangle \longrightarrow^* \langle S', v \rangle$ then $\langle S, p \rangle \Downarrow v$.

The central meta-theoretic result we'll be interested in is soundness, i.e., every well-typed program terminates and evaluates to a value with the same type as the program.

Definition. *The types of values are given as:*

$$\mathcal{T}(n) = i32$$

 $\mathcal{T}(()) = ()$

Definition. For any context Γ and store S, we write $\Gamma \sim S$ to mean that $dom(\Gamma) = dom(S)$ and $\mathcal{T}(S(x)) = \Gamma(x)$ for all variables $x \in dom(\Gamma)$.

Theorem. (Type Soundness) Let Γ is a context and let S be a store such that $\Gamma \sim S$. For any program p and type t, if $\Gamma \vdash p$: t then there is a value v such that $\langle S, p \rangle \downarrow v$ and $\mathcal{T}(v) = t$.

Proof. We first prove soundness for expressions by induction on derivations.

- (int) Given $\Gamma \vdash n$: i32 take v to be n.
- (unit) Given $\Gamma \vdash$ () : () take v to be ().
- (var) Given $\Gamma \vdash x : t$ with $(x \mapsto t) \in \Gamma$, take v to be S(x).
- (add) Suppose $\Gamma \vdash e_1 + e_2 :$ i32 where $\Gamma \vdash e_1 :$ i32 and $\Gamma \vdash e_2 :$ i32. By the IH, there are values v_1 and v_2 such that $\langle S, e_1 \rangle \Downarrow v_1$ and $\langle S, e_2 \rangle \Downarrow v_2$. By the (add) evaluation rule, we have that $\langle S, e_1 + e_2 \rangle \Downarrow v_1 + v_2$, where $\mathcal{T}(v_1 + v_2) =$ i32.

We then prove soundness for programs by simultaneous induction on derivations and number of statements in the program.

• If *p* has no statements, then it is a single expression, and soundness follows from soundness for expressions.

• Otherwise, suppose that $\Gamma_1 \vdash s$; p:t where $\Gamma_1 \vdash s \dashv \Gamma_2$ and $\Gamma_2 \vdash p:t$. Since there is only one form of statement, we know that s is of the form $\mathsf{let}\ x = e$ and Γ_2 is of the form $\Gamma_1[x \mapsto t]$. Furthermore, there is a type t' such that $\Gamma \vdash e:t'$ and a value v' such that $\langle S, e \rangle \Downarrow v'$ and $\mathcal{T}(v') = t'$ (by soundness for expressions). It suffices to note that $\Gamma[x \mapsto t'] \sim S[x \mapsto v']$ so that we can apply the IH to $\Gamma_1[x \mapsto t'] \vdash p:t$ and get a value v such that $\langle S[x \mapsto v'], p \rangle \Downarrow v$ and $\mathcal{T}(v) = t$. Note that $x \notin \mathsf{dom}(\Gamma)$ by the (let) typing rule, so the $\Gamma[x \mapsto t'] \sim S[x \mapsto v]$ follows from $\Gamma \sim S$ and $\mathcal{T}(S[x \mapsto v](x)) = \mathcal{T}(v) = t' = \Gamma[x \mapsto t'](x)$. We can then use the (let) and (prog) evaluation rules to derive that $\langle S, s; p \rangle \Downarrow v$.