salt0: Straight Line Programs

CS392-M1: Rust, In Practice and in Theory

1 Syntax

The following is the BNF specification for the syntax of salt0. We fix an arbitrary set V of variables.

X (variables, V)
n (integers, Z)
vi=n| O (values, Val)
ex=n| (O |x|e+e (expressions, &)
su=1letx=e (statements, S)
pui={s;}e (programs, P)
tn=1i32] O (types, T)
2 Typing
There are three kinds of typing judgments:
The:t (expressions)
T'ksHT (statments)
I'kp:t (programs)

The meta-variable I' stands for a typing context (a.k.a., static environment), which we will take to be a map
from variables to types (i.e., a map of the form V — 7). Note that statements do not have types, but they
can affect the state of the context (i.e., they can have side-effects). The following are the typing rules for
saltO.

nez . - it (x—1t) el
TFn:isz 000 rFo-o Trx:e  Van
I'kep:i32 I'key:i32
I'kej+ep:i32 (add)
x ¢ dom(T) Tke:t
(let)
I'+letx=e—T[x—
I'ks-I, IobEp:t
P~ (prog)

I'ikEs;p:t



3 Evaluation

There are three kinds of (big-step) evaluation judgments:

(S,e)do (expressions)
(S,s)4s (statements)
(S, p)do (programs)

The meta-variable S stands for a store (a.k.a., dynamic environment), which we will take to be a map from
variables to values (i.e., a map of the form V — Val). Note that statements do not have values, but they can
affect the state of the store. The following are the evaluation rules for salt0.

nez . (unit) (var)
T8, ) g oo (S, 0) 40 (S, x) S
(S,a)dvr (S, e) v (add)
(S,e1+ex) dvr+0;
S,
(S,e)do (let)
(S, letx=e) | S[x+— 0]
S S S
(S1,5) U5 (2,P>ilv(prog)
<Sl 785 P > Jo
4 Reduction
There are three kinds of reduction judgments:
(S,e)y—(S,e) (expressions)
(S,s)y—(S,s) (statements)
(S,p)—(S,p) (programs)
We will extend our syntax to include holes and to allow for evaluating statements:
su=letx=c|e (statements)
e[ T==101lelJ+ele+e[] (holed expressions)
s[ [ s==1letx=e] ] (holed statement)
pll=={s[ 1:}|{s:}el] (holed programs)

The e statement is a placeholder for statements that have been fully evaluated. The following are the
reduction rules for saltO.

(x—v)es
(S§,x)—(S,v)

(var)

dd
(S, 0+02) — (S, 0 407) 299

(S, Tevx=0) — (SE o], o) 0



<Sllsl>—><52152>

<Sl/51§P>—><SZ/52;P> (progl)
(5, e p)— (5, p) P8
(S1,e1) —(S2, ) (hole)

(S1, ale] ) — (S2, ale2] )

5 Meta-Theory

These first two theorems give a correspondence between the evaluation rules and the reduction rules. We
will appeal to these theorems to justify using reduction rules to help use visualize the evaluation process.

Theorem. (Operational Adequacy) For any store S, program p, and value v, if ( S, p ) | v, then there is store S’
such that (S, p) —* (S, v).

Theorem. (Operational Soundness) For any stores S and S', program p, and value v, if (S, p ) —* (S, v)
then (S, p) | v.

The central meta-theoretic result we’ll be interested in is soundness, i.e., every well-typed program
terminates and evaluates to a value with the same type as the program.

Definition. The types of values are given as:
T(n) =132
T(O)=0

Definition. For any context I and store S, we write I' ~ S to mean that dom(I") = dom(S) and T (S(x)) = I'(x)
for all variables x € dom(T').

Theorem. (Type Soundness) Let T is a context and let S be a store such that I ~ S. For any program p and type t,
if T & p : t then there is a value v such that (S, p ) J vand T (v) = t.

Proof. We first prove soundness for expressions by induction on derivations.
e (int) Given I+ n : 132 take v to be n.
® (unit) GivenI' = () : () take v to be (.
e (var) GivenT F x : t with (x — t) € T, take v to be S(x).

® (add) Suppose I' - ey + ey : i32 whereI' - ¢; : i32 and I' - ey : i32. By the IH, there are values
v and v, such that (S, e; ) | vy and (S, ey ) || vp. By the (add) evaluation rule, we have that
(S, e1+e) | v+ vy, where T (v1 +vp) = 132.

We then prove soundness for programs by simultaneous induction on derivations and number of state-
ments in the program.

¢ If p has no statements, then it is a single expression, and soundness follows from soundness for
expressions.



e Otherwise, suppose thatI'y s ; p: t whereI'1 =s 4Ty and I'; | p : t. Since there is only one form
of statement, we know that s is of the form let x = e and I'; is of the form I'; [x — {|. Furthermore,
there is a type ' such that I' I e : ' and a value ¢/ such that ( S, ¢ ) | ¢/ and T(v') = ¢ (by
soundness for expressions). It suffices to note that I'[x — '] ~ S[x — ¢'] so that we can apply the
IH to T'1[x — '] b p : t and get a value v such that ( S[x — ], p) | vand T(v) = t. Note
that x ¢ dom(I') by the (let) typing rule, so the I'[x — t'| ~ S[x — o] follows from I' ~ S and
T(S[x — v](x)) = T(v) =t =T[x — t](x). We can then use the (let) and (prog) evaluation rules to
derive that (S, s; p) J v.
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