salt1l: Mutable Variables, Immutable References

CS392-M1: Rust, In Practice and in Theory

1 Syntax

The following is the BNF specification for the syntax of salt1. We fix an arbitrary set V of variables.

X (variables, V)
n (integers, Z)
£= Aty (locations, £)
w = {*} x (place expression, W)
vi= O |n|l (values, Val)
ex=0|n|lw|sw|x=e (expressions, £)
pui={s;}e (programs, P)
su=e|let [mut]x=e (statements, S)
ti=i32]| O |&w (types, T)
m == imm | mut (mutability)
2 Typing
There are three kinds of typing judgments:
'te:t-dT (expressions)
'-s4T (statments)
I'Ep:t4T (programs)

I' is a typing context which we will take to be a map from variables to types tagged with mutability infor-
mation (i.e., a map of the form V +— T x {imm, mut}). Note that expression can have side-effects because
of the assignment operator. The following are the typing rules for salt1.

, (unit) — (inp (¥t el
r-0:04r '=n:i324T Fx tdT (var)
I'tFwy:&wy AT I'twy,:tdT 'w:t4T . -
F'E*xwy:t4T (deref) 'r&w:&w-T (imm-borrow)
Trie~ie O™ Tro~o O

Fl—w1:t1—|F F"’(,U2Zt2—|r r}—tlﬁtz
I't&w ~&w;

(~-borrow)



Definition. writable(T, x) is equivalent to fy.(y — & x) € T.

X s MUY € Ty T bFe:t, 4T, It~ ty writable(I’, x
1

assign
I1bEx=e: O AT[x — U] (assign)
I'kte:t4I,
_— -stmt
F1F64F2 (exprsm)
IiFe:tAT dom(T" IikFe:t-T dom(T"
e 2 * ¢ O”.]( 2) (let) 1me 2 x ¢ dom(I’5) (let-mut)
I Fletx=eATx— MM I F letmut x = e 4 Tp[x — MUY

IhkEsHI, Ipp:tdTs

IMEs;p:t-drls (prog)
3 Evaluation
There are three kinds of (big-step) evaluation judgments:
(S,eyd(S,v) (expressions)
S,s)|S (statements)
(S, p) (S, 0) (programs)

S stands is a store (a.k.a., dynamic environment) which we will take to be a map from locations to values
(i.e., a map of the form £ — Val). Note that expressions can have side-effects because of the assignment
operator. The following are the evaluation rules for salti.

(unit) (int)

(5, 000(S,0) (S, m) U (S, n)
Definition. The functions loc : (L — Val) x W — L and read : (L — Val) x W — Val are given as:
loc(S, x) = Uy

loc(S, * w) = S(loc(S,w))
read(S, w) = S(loc(S, w))

(imm-borrow)

(place)

(S, w) (S, read(S,w) ) (S,&w) (S, loc(S,w))

(S1,e)l(S2,0)
<51,X=6>U <Szwx|—>v], ()>

<51,€>U<52,0> <S],€>U<52,0>
<S1,€>U52 <51,1et[mut]x=e>l}52[€xr—>v]

(S1,8)1 S (Sa, p)¥(S3,0)
(S1,85p)U(S3,0)

(assign)

(expr-stmt) (let)

(prog)



4 Reduction

There are three kinds of reduction judgments:

(S,ey—(S,e) (expressions)
(S,s)—(S,s) (statements)
(S, p)—(S,p) (programs)

We will extend our syntax to deal to included holes:

e[l J==1[1lel]=ele=e[] (holed expressions)
s[ Js=1letx=e] ] (holed statement)
plT==A{sl1:}I{s;}el] (holed programs)

We don’t need a dummy statement e because expressions are considered expressions The following are the
reduction rules for salt1.

(place)

(S, w) — (S, read(S,w) )

(S, &w) — (S, loc(S,w) ) (imm-borrow)

(5, x-0) = (Sl o], O ~ssign)

(S, let[mut]x=0v) — (S[lx—1v], O) (et

(S,81)— (5", s1)
(S, s1;...;sk;e>—><5’,5’1;...;sk;e>

(prog1)

(S,vsis5...5805e) —(S,825...58;¢€) (prog2)

<Sl,€1>—><52,€2>
(S1, ale] ) — (S2, ole2] )

(hole)

5 Meta-Theory

Theorem. (Operational Adequacy) For any stores Sy, program p, and value v, if ( S1, p ) | v, then there is a store
Sy suchthat (S, p) —* ( Sy, v).

Theorem. (Operational Soundness) For any stores Sq and Sy, program p, and value v, if (S, p) —* ( Sz, v)
then (S, p) | v

Definition. The types of values are given as:

T(n) =132
T(O)=0
T(y)=tx



Definition. For any context I' and store S, we write T ~ S to mean that dom(S) = {¢y : x € dom(I)} and
I'HT(x) = T(S(l)) forall x € dom(T).

Theorem. (Type Soundness) Let I is a context, let Sy be a store such that I'y ~ S1. For any program p and type t, if
Ty b p:t AT, then there is a store Sy value v such that ( Sy, p) U (Sa, v)and Ty ~ Sy and T -t = T (v).

Proof. We first prove soundness for expression by induction on derivations.
¢ (unit) Obvious.
¢ (int) Obvious.
e (var) This follow immediately from the (var) rules and I'1 ~ 5;.

e (deref) By the IH, we know that ( S;, w; ) | ( S1, read(Sy,wq) ) whereI'y - & wy ~ T (read(S1, wy))
and ( Sy, wy ) I (S, read(Sy, wy) ) where IT'y - ¢ ~ T (read(S1,wy)). In order for the former type
equivalence to be derivable, it must be that read(S1, w1) = S1(loc(S1,w1)) = ¢; for some variable z so
that 7 (S1(loc(S1,w1))) = & z. Furthermore, this equivalence must follow from the (=-borrow) rule,
which implies that T'; - t ~ T';(z) (exercise). Next, note that

T (read(Sy,* wy)) = T (S1(S1(loc(Sy,w1)))) = T (S1(£2))

and 'y - Tq(z) = T(S1(¢z)) since I'1 ~ S1. Finally, ' - - ~ - defines an equivalence relation on types
(exercise), meaning that I'y -t ~ T (read(Sy, * wq)) as desired.

* (imm-borrow) By the IH, We know that (51, w) |} (S1, S1(loc(S1,w) ) and 'y -t =~ T (S1(loc(S1,w)).
We can take v to be loc(S1, w) by the (imm-borrow) evaluation rule. We need to verify thatT'y - & w ~
T (loc(S1,w)). Since loc(Sq, w) appears as an argument to Sq in a type equivalence, it be of the form
¢, for some variable z. Thus, it suffices to note that I'y F I'1(z) &~ T (51(¢;)) by I'1 ~ S; and so we can
derive:

I'-tw:t4T '+z:T(z) 4T I-t=~T(z)
I'F&w~T(loc(S,w))

e (assign) By the IH, we have a store S, and value v such that (S, e) | ( Sy, v) where I, ~ S, and
I -t = T (v). By the (assign) evaluation rule, we have (S1, x=¢) | ( Sz[lx — v], OO ). We need
to show that I'x[x +— tp] ~ Sp[ly + v]. This follows from the fact that I'; - #; ~ t, by assumption
and that type equivalence is an equivalence relation (x is the only variable we need to check for the
~-condition).

Next we prove soundness for statements by induction on derivations.
* (expr-stmt) This follows directly from soundness for expressions

e (let-[mut]) By the IH, there is a store S, and a value v such that (S1, e) | (S, v)and I, ~ S, and
Iy -t~ T (v). By the (let) evaluation rule ( S;, let [mut] x =e) |} Sp[¢x — v]. It follows immediately
that Ip[x — "] ~ Sy[€yx — v]; in particular Ty [x — t"] = T'(x) &= T (S2[lx — v](£y)]).

Soundness of programs then follows immediately by induction on derivations using the (prog) rule. O



