salt1: Mutable Variables, Immutable References

CS392-M1: Rust, In Practice and in Theory

1 Syntax

The following is the BNF specification for the syntax of salt1. We fix an arbitrary set \mathcal{V} of variables.

x	(variables, \mathcal{V})
n	(integers, \mathbb{Z})
$\ell ::= \ell_x$	(locations, \mathcal{L})
$w ::= \{*\} x$	(place expression, \mathcal{W})
$v := () \mid n \mid \ell$	(values, Val)
e ::= () n w & w x = e	(expressions, \mathcal{E})
$p ::= \{s ; \} e$	(programs, \mathcal{P})
$s ::= e \mid \mathtt{let} [\mathtt{mut}] \ x = e$	(statements, \mathcal{S})
$t := i32 \mid () \mid \& w$	(types, \mathcal{T})
$m := imm \mid mut$	(mutability)

2 Typing

There are three kinds of typing judgments:

$$\Gamma \vdash e : t \dashv \Gamma$$
 (expressions)
$$\Gamma \vdash s \dashv \Gamma$$
 (statments)
$$\Gamma \vdash p : t \dashv \Gamma$$
 (programs)

 Γ is a typing context which we will take to be a map from variables to types tagged with mutability information (i.e., a map of the form $\mathcal{V} \mapsto \mathcal{T} \times \{\text{imm, mut}\}$). Note that expression can have side-effects because of the assignment operator. The following are the typing rules for salt1.

$$\frac{\Gamma \vdash () : () \dashv \Gamma}{\Gamma \vdash () : () \dashv \Gamma} \text{ (unit)} \qquad \frac{\Gamma \vdash n : \mathbf{i} \cdot \mathbf{32} \dashv \Gamma}{\Gamma \vdash n : \mathbf{i} \cdot \mathbf{32} \dashv \Gamma} \text{ (int)} \qquad \frac{(x \mapsto t^m) \in \Gamma}{\Gamma \vdash x : t \dashv \Gamma} \text{ (var)}$$

$$\frac{\Gamma \vdash w_1 : \& w_2 \dashv \Gamma \qquad \Gamma \vdash w_2 : t \dashv \Gamma}{\Gamma \vdash * w_1 : t \dashv \Gamma} \text{ (deref)} \qquad \frac{\Gamma \vdash w : t \dashv \Gamma}{\Gamma \vdash \& w : \& w \dashv \Gamma} \text{ (imm-borrow)}$$

$$\frac{\Gamma \vdash w_1 : t_1 \dashv \Gamma \qquad \Gamma \vdash w_2 : t_2 \dashv \Gamma \qquad \Gamma \vdash t_1 \approx t_2}{\Gamma \vdash \& w_1 \approx \& w_2} \text{ (\approx-borrow)}$$

Definition. writable(Γ , x) is equivalent to $\nexists y.(y \mapsto \& x) \in \Gamma$.

$$\frac{(x \mapsto t_1^{\mathsf{mut}}) \in \Gamma_1 \qquad \Gamma_1 \vdash e : t_2 \dashv \Gamma_2 \qquad \Gamma_2 \vdash t_1 \approx t_2 \qquad \mathsf{writable}(\Gamma_2, x)}{\Gamma_1 \vdash x = e : () \dashv \Gamma_2[x \mapsto t_2^{\mathsf{mut}}]} \text{ (assign)}$$

$$\frac{\Gamma_1 \vdash e : t \dashv \Gamma_2}{\Gamma_1 \vdash e \dashv \Gamma_2} \text{ (expr-stmt)}$$

$$\frac{\Gamma_1 \vdash e : t \dashv \Gamma_2 \qquad x \not\in \mathsf{dom}(\Gamma_2)}{\Gamma_1 \vdash \mathsf{let} \ x = e \dashv \Gamma_2[x \mapsto t^{\mathsf{imm}}]} \text{ (let)} \qquad \frac{\Gamma_1 \vdash e : t \dashv \Gamma_2 \qquad x \not\in \mathsf{dom}(\Gamma_2)}{\Gamma_1 \vdash \mathsf{let} \ \mathsf{mut} \ x = e \dashv \Gamma_2[x \mapsto t^{\mathsf{mut}}]} \text{ (let-mut)}$$

$$\frac{\Gamma_1 \vdash s \dashv \Gamma_2 \qquad \Gamma_2 \vdash p : t \dashv \Gamma_3}{\Gamma_1 \vdash s \ ; \ p : t \dashv \Gamma_3} \text{ (prog)}$$

3 Evaluation

There are three kinds of (big-step) evaluation judgments:

$$\langle S, e \rangle \Downarrow \langle S, v \rangle$$
 (expressions)
 $\langle S, s \rangle \Downarrow S$ (statements)
 $\langle S, p \rangle \Downarrow \langle S, v \rangle$ (programs)

S stands is a store (a.k.a., dynamic environment) which we will take to be a map from locations to values (i.e., a map of the form $\mathcal{L} \mapsto Val$). Note that expressions can have side-effects because of the assignment operator. The following are the evaluation rules for salt1.

$$\frac{}{\langle S, () \rangle \Downarrow \langle S, () \rangle} \text{ (unit)} \qquad \frac{}{\langle S, n \rangle \Downarrow \langle S, n \rangle} \text{ (int)}$$

Definition. *The functions* loc : $(\mathcal{L} \mapsto Val) \times \mathcal{W} \to \mathcal{L}$ *and* read : $(\mathcal{L} \mapsto Val) \times \mathcal{W} \to Val$ *are given as*:

$$\log(S,x) = \ell_{x}$$

$$\log(S,*w) = S(\log(S,w))$$

$$\operatorname{read}(S,w) = S(\log(S,w))$$

$$\frac{\langle S, w \rangle \Downarrow \langle S, \operatorname{read}(S,w) \rangle}{\langle S, w \rangle \Downarrow \langle S, \operatorname{loc}(S,w) \rangle} \text{ (imm-borrow)}$$

$$\frac{\langle S_{1}, e \rangle \Downarrow \langle S_{2}, v \rangle}{\langle S_{1}, x = e \rangle \Downarrow \langle S_{2}[\ell_{x} \mapsto v], () \rangle} \text{ (assign)}$$

$$\frac{\langle S_{1}, e \rangle \Downarrow \langle S_{2}, v \rangle}{\langle S_{1}, e \rangle \Downarrow S_{2}} \text{ (expr-stmt)} \qquad \frac{\langle S_{1}, e \rangle \Downarrow \langle S_{2}, v \rangle}{\langle S_{1}, \operatorname{let}[\operatorname{mut}] x = e \rangle \Downarrow S_{2}[\ell_{x} \mapsto v]} \text{ (let)}$$

$$\frac{\langle S_{1}, s \rangle \Downarrow S_{2}}{\langle S_{1}, s \rangle \Downarrow \langle S_{3}, v \rangle} \text{ (prog)}$$

4 Reduction

There are three kinds of reduction judgments:

$$\langle S, e \rangle \longrightarrow \langle S, e \rangle$$
 (expressions)
 $\langle S, s \rangle \longrightarrow \langle S, s \rangle$ (statements)
 $\langle S, p \rangle \longrightarrow \langle S, p \rangle$ (programs)

We will extend our syntax to deal to included holes:

$$e[] ::= [] | e[] = e | e = e[]$$
 (holed expressions)
$$s[] ::= let x = e[]$$
 (holed statement)
$$p[] ::= \{s[] ; \} | \{s ; \} e[]$$
 (holed programs)

We don't need a dummy statement • because expressions are considered expressions. The following are the reduction rules for salt1.

5 Meta-Theory

Theorem. (Operational Adequacy) For any stores S_1 , program p, and value v, if $\langle S_1, p \rangle \Downarrow v$, then there is a store S_2 such that $\langle S_1, p \rangle \longrightarrow^* \langle S_2, v \rangle$.

Theorem. (Operational Soundness) For any stores S_1 and S_2 , program p, and value v, if $\langle S_1, p \rangle \longrightarrow^* \langle S_2, v \rangle$ then $\langle S_1, p \rangle \Downarrow v$.

Definition. *The types of values are given as:*

$$\mathcal{T}(n) = i32$$
 $\mathcal{T}(()) = ()$
 $\mathcal{T}(\ell_x) = \& x$

Definition. For any context Γ and store S, we write $\Gamma \sim S$ to mean that $dom(S) = \{\ell_x : x \in dom(\Gamma)\}$ and $\Gamma \vdash \Gamma(x) \approx \mathcal{T}(S(\ell_x))$ for all $x \in dom(\Gamma)$.

Theorem. (Type Soundness) Let Γ is a context, let S_1 be a store such that $\Gamma_1 \sim S_1$. For any program p and type t, if $\Gamma_1 \vdash p : t \dashv \Gamma_2$ then there is a store S_2 value v such that $\langle S_1, p \rangle \Downarrow \langle S_2, v \rangle$ and $\Gamma_2 \sim S_2$ and $\Gamma_2 \vdash t \approx \mathcal{T}(v)$.

Proof. We first prove soundness for expression by induction on derivations.

- (unit) Obvious.
- (int) Obvious.
- (var) This follow immediately from the (var) rules and $\Gamma_1 \sim S_1$.
- (deref) By the IH, we know that $\langle S_1, w_1 \rangle \Downarrow \langle S_1, \operatorname{read}(S_1, w_1) \rangle$ where $\Gamma_1 \vdash \& w_2 \approx \mathcal{T}(\operatorname{read}(S_1, w_1))$ and $\langle S_1, w_2 \rangle \Downarrow \langle S_1, \operatorname{read}(S_1, w_2) \rangle$ where $\Gamma_1 \vdash t \approx \mathcal{T}(\operatorname{read}(S_1, w_2))$. In order for the former type equivalence to be derivable, it must be that $\operatorname{read}(S_1, w_1) = S_1(\operatorname{loc}(S_1, w_1)) = \ell_z$ for some variable z so that $\mathcal{T}(S_1(\operatorname{loc}(S_1, w_1))) = \& z$. Furthermore, this equivalence must follow from the (\approx -borrow) rule, which implies that $\Gamma_1 \vdash t \approx \Gamma_1(z)$ (exercise). Next, note that

$$\mathcal{T}(\mathsf{read}(S_1, *w_1)) = \mathcal{T}(S_1(S_1(\mathsf{loc}(S_1, w_1)))) = \mathcal{T}(S_1(\ell_z))$$

and $\Gamma_1 \vdash \Gamma_1(z) \approx \mathcal{T}(S_1(\ell_z))$ since $\Gamma_1 \sim S_1$. Finally, $\Gamma \vdash \cdot \approx \cdot$ defines an equivalence relation on types (exercise), meaning that $\Gamma_1 \vdash t \approx \mathcal{T}(\mathsf{read}(S_1, *w_1))$ as desired.

• (imm-borrow) By the IH, We know that $\langle S_1, w \rangle \Downarrow \langle S_1, S_1(\operatorname{loc}(S_1, w)) \rangle$ and $\Gamma_1 \vdash t \approx \mathcal{T}(S_1(\operatorname{loc}(S_1, w)))$. We can take v to be $\operatorname{loc}(S_1, w)$ by the (imm-borrow) evaluation rule. We need to verify that $\Gamma_1 \vdash \& w \approx \mathcal{T}(\operatorname{loc}(S_1, w))$. Since $\operatorname{loc}(S_1, w)$ appears as an argument to S_1 in a type equivalence, it be of the form ℓ_z for some variable z. Thus, it suffices to note that $\Gamma_1 \vdash \Gamma_1(z) \approx \mathcal{T}(S_1(\ell_z))$ by $\Gamma_1 \sim S_1$ and so we can derive:

$$\frac{\Gamma \vdash w : t \dashv \Gamma \qquad \Gamma \vdash z : \Gamma(z) \dashv \Gamma \qquad \Gamma \vdash t \approx \Gamma(z)}{\Gamma \vdash \mathbf{\&} \ w \approx \mathcal{T}(\mathsf{loc}(S, w))}$$

• (assign) By the IH, we have a store S_2 and value v such that $\langle S_1, e \rangle \Downarrow \langle S_2, v \rangle$ where $\Gamma_2 \sim S_2$ and $\Gamma_2 \vdash t_2 \approx \mathcal{T}(v)$. By the (assign) evaluation rule, we have $\langle S_1, x = e \rangle \Downarrow \langle S_2[\ell_x \mapsto v]$, () \rangle . We need to show that $\Gamma_2[x \mapsto t_2] \sim S_2[\ell_x \mapsto v]$. This follows from the fact that $\Gamma_2 \vdash t_1 \approx t_2$ by assumption and that type equivalence is an equivalence relation (x is the only variable we need to check for the \sim -condition).

Next we prove soundness for statements by induction on derivations.

- (expr-stmt) This follows directly from soundness for expressions
- (let-[mut]) By the IH, there is a store S_2 and a value v such that $\langle S_1, e \rangle \Downarrow \langle S_2, v \rangle$ and $\Gamma_2 \sim S_2$ and $\Gamma_2 \vdash t \approx \mathcal{T}(v)$. By the (let) evaluation rule $\langle S_1, \mathbf{let} [\mathbf{mut}] x = e \rangle \Downarrow S_2[\ell_x \mapsto v]$. It follows immediately that $\Gamma_2[x \mapsto t^m] \sim S_2[\ell_x \mapsto v]$; in particular $\Gamma_2[x \mapsto t^m] \vdash \Gamma(x) \approx \mathcal{T}(S_2[\ell_x \mapsto v](\ell_x)]$).

Soundness of programs then follows immediately by induction on derivations using the (prog) rule. \Box