
salt1: Mutable Variables, Immutable References

CS392-M1: Rust, In Practice and in Theory

1 Syntax

The following is the BNF specification for the syntax of salt1. We fix an arbitrary set V of variables.

x (variables, V)

n (integers, Z)

ℓ ::= ℓx (locations, L)

w ::= {*} x (place expression, W)

v ::= () | n | ℓ (values, Val)

e ::= () | n | w | & w | x = e (expressions, E)

p ::= {s ;} e (programs, P)

s ::= e | let [mut] x = e (statements, S)

t ::= i32 | () | & w (types, T)

m ::= imm | mut (mutability)

2 Typing

There are three kinds of typing judgments:

Γ ⊢ e : t ⊣ Γ (expressions)

Γ ⊢ s ⊣ Γ (statments)

Γ ⊢ p : t ⊣ Γ (programs)

Γ is a typing context which we will take to be a map from variables to types tagged with mutability infor-
mation (i.e., a map of the form V 7→ T × {imm,mut}). Note that expression can have side-effects because
of the assignment operator. The following are the typing rules for salt1.

(unit)
Γ ⊢ () : () ⊣ Γ

(int)
Γ ⊢ n : i32 ⊣ Γ

(x 7→ tm) ∈ Γ
(var)

Γ ⊢ x : t ⊣ Γ

Γ ⊢ w1 : & w2 ⊣ Γ Γ ⊢ w2 : t ⊣ Γ
(deref)

Γ ⊢ * w1 : t ⊣ Γ
Γ ⊢ w : t ⊣ Γ (imm-borrow)

Γ ⊢ & w : & w ⊣ Γ

(≈-int)
Γ ⊢ i32 ≈ i32

(≈-unit)
Γ ⊢ () ≈ ()

Γ ⊢ w1 : t1 ⊣ Γ Γ ⊢ w2 : t2 ⊣ Γ Γ ⊢ t1 ≈ t2 (≈-borrow)
Γ ⊢ & w1 ≈ & w2

1

Definition. writable(Γ, x) is equivalent to ∄y.(y 7→ & x) ∈ Γ.

(x 7→ tmut
1) ∈ Γ1 Γ1 ⊢ e : t2 ⊣ Γ2 Γ2 ⊢ t1 ≈ t2 writable(Γ2, x)

(assign)
Γ1 ⊢ x = e : () ⊣ Γ2[x 7→ tmut

2]

Γ1 ⊢ e : t ⊣ Γ2 (expr-stmt)
Γ1 ⊢ e ⊣ Γ2

Γ1 ⊢ e : t ⊣ Γ2 x ̸∈ dom(Γ2) (let)
Γ1 ⊢ let x = e ⊣ Γ2[x 7→ timm]

Γ1 ⊢ e : t ⊣ Γ2 x ̸∈ dom(Γ2) (let-mut)
Γ1 ⊢ let mut x = e ⊣ Γ2[x 7→ tmut]

Γ1 ⊢ s ⊣ Γ2 Γ2 ⊢ p : t ⊣ Γ3 (prog)
Γ1 ⊢ s ; p : t ⊣ Γ3

3 Evaluation

There are three kinds of (big-step) evaluation judgments:

⟨ S , e ⟩ ⇓ ⟨ S , v ⟩ (expressions)

⟨ S , s ⟩ ⇓ S (statements)

⟨ S , p ⟩ ⇓ ⟨ S , v ⟩ (programs)

S stands is a store (a.k.a., dynamic environment) which we will take to be a map from locations to values
(i.e., a map of the form L 7→ Val). Note that expressions can have side-effects because of the assignment
operator. The following are the evaluation rules for salt1.

(unit)
⟨ S , () ⟩ ⇓ ⟨ S , () ⟩

(int)
⟨ S , n ⟩ ⇓ ⟨ S , n ⟩

Definition. The functions loc : (L 7→ Val)×W → L and read : (L 7→ Val)×W → Val are given as:

loc(S, x) = ℓx

loc(S, * w) = S(loc(S, w))

read(S, w) = S(loc(S, w))

(place)
⟨ S , w ⟩ ⇓ ⟨ S , read(S, w) ⟩

(imm-borrow)
⟨ S , & w ⟩ ⇓ ⟨ S , loc(S, w) ⟩

⟨ S1 , e ⟩ ⇓ ⟨ S2 , v ⟩
(assign)

⟨ S1 , x = e ⟩ ⇓ ⟨ S2[ℓx 7→ v] , () ⟩

⟨ S1 , e ⟩ ⇓ ⟨ S2 , v ⟩
(expr-stmt)

⟨ S1 , e ⟩ ⇓ S2

⟨ S1 , e ⟩ ⇓ ⟨ S2 , v ⟩
(let)

⟨ S1 , let [mut] x = e ⟩ ⇓ S2[ℓx 7→ v]

⟨ S1 , s ⟩ ⇓ S2 ⟨ S2 , p ⟩ ⇓ ⟨ S3 , v ⟩
(prog)

⟨ S1 , s ; p ⟩ ⇓ ⟨ S3 , v ⟩

2

4 Reduction

There are three kinds of reduction judgments:

⟨ S , e ⟩ −→ ⟨ S , e ⟩ (expressions)

⟨ S , s ⟩ −→ ⟨ S , s ⟩ (statements)

⟨ S , p ⟩ −→ ⟨ S , p ⟩ (programs)

We will extend our syntax to deal to included holes:

eJ K ::= J K | eJ K = e | e = eJ K (holed expressions)

sJ K ::= let x = eJ K (holed statement)

pJ K ::= {sJ K ;} | {s ;} eJ K (holed programs)

We don’t need a dummy statement • because expressions are considered expressions The following are the
reduction rules for salt1.

(place)
⟨ S , w ⟩ −→ ⟨ S , read(S, w) ⟩

(imm-borrow)
⟨ S1 , & w ⟩ −→ ⟨ S , loc(S, w) ⟩

(assign)
⟨ S , x = v ⟩ −→ ⟨ S[ℓx 7→ v] , () ⟩

(let)
⟨ S , let [mut] x = v ⟩ −→ ⟨ S[ℓx 7→ v] , () ⟩

⟨ S , s1 ⟩ −→ ⟨ S′ , s′1 ⟩ (prog1)
⟨ S , s1 ; . . . ; sk ; e ⟩ −→ ⟨ S′ , s′1 ; . . . ; sk ; e ⟩

(prog2)
⟨ S , v ; s2 ; . . . ; sk ; e ⟩ −→ ⟨ S , s2 ; . . . ; sk ; e ⟩

⟨ S1 , e1 ⟩ −→ ⟨ S2 , e2 ⟩ (hole)
⟨ S1 , σJe1K ⟩ −→ ⟨ S2 , σJe2K ⟩

5 Meta-Theory

Theorem. (Operational Adequacy) For any stores S1, program p, and value v, if ⟨ S1 , p ⟩ ⇓ v, then there is a store
S2 such that ⟨ S1 , p ⟩ −→⋆ ⟨ S2 , v ⟩.

Theorem. (Operational Soundness) For any stores S1 and S2, program p, and value v, if ⟨ S1 , p ⟩ −→⋆ ⟨ S2 , v ⟩
then ⟨ S1 , p ⟩ ⇓ v.

Definition. The types of values are given as:

T (n) = i32

T (()) = ()

T (ℓx) = & x

3

Definition. For any context Γ and store S, we write Γ ∼ S to mean that dom(S) = {ℓx : x ∈ dom(Γ)} and
Γ ⊢ Γ(x) ≈ T (S(ℓx)) for all x ∈ dom(Γ).

Theorem. (Type Soundness) Let Γ is a context, let S1 be a store such that Γ1 ∼ S1. For any program p and type t, if
Γ1 ⊢ p : t ⊣ Γ2 then there is a store S2 value v such that ⟨ S1 , p ⟩ ⇓ ⟨ S2 , v ⟩ and Γ2 ∼ S2 and Γ2 ⊢ t ≈ T (v).

Proof. We first prove soundness for expression by induction on derivations.

• (unit) Obvious.

• (int) Obvious.

• (var) This follow immediately from the (var) rules and Γ1 ∼ S1.

• (deref) By the IH, we know that ⟨ S1 , w1 ⟩ ⇓ ⟨ S1 , read(S1, w1) ⟩ where Γ1 ⊢ & w2 ≈ T (read(S1, w1))

and ⟨ S1 , w2 ⟩ ⇓ ⟨ S1 , read(S1, w2) ⟩ where Γ1 ⊢ t ≈ T (read(S1, w2)). In order for the former type
equivalence to be derivable, it must be that read(S1, w1) = S1(loc(S1, w1)) = ℓz for some variable z so
that T (S1(loc(S1, w1))) = & z. Furthermore, this equivalence must follow from the (≈-borrow) rule,
which implies that Γ1 ⊢ t ≈ Γ1(z) (exercise). Next, note that

T (read(S1, * w1)) = T (S1(S1(loc(S1, w1)))) = T (S1(ℓz))

and Γ1 ⊢ Γ1(z) ≈ T (S1(ℓz)) since Γ1 ∼ S1. Finally, Γ ⊢ · ≈ · defines an equivalence relation on types
(exercise), meaning that Γ1 ⊢ t ≈ T (read(S1, * w1)) as desired.

• (imm-borrow) By the IH, We know that ⟨ S1 , w ⟩ ⇓ ⟨ S1 , S1(loc(S1, w) ⟩ and Γ1 ⊢ t ≈ T (S1(loc(S1, w)).
We can take v to be loc(S1, w) by the (imm-borrow) evaluation rule. We need to verify that Γ1 ⊢ & w ≈
T (loc(S1, w)). Since loc(S1, w) appears as an argument to S1 in a type equivalence, it be of the form
ℓz for some variable z. Thus, it suffices to note that Γ1 ⊢ Γ1(z) ≈ T (S1(ℓz)) by Γ1 ∼ S1 and so we can
derive:

Γ ⊢ w : t ⊣ Γ Γ ⊢ z : Γ(z) ⊣ Γ Γ ⊢ t ≈ Γ(z)
Γ ⊢ & w ≈ T (loc(S, w))

• (assign) By the IH, we have a store S2 and value v such that ⟨ S1 , e ⟩ ⇓ ⟨ S2 , v ⟩ where Γ2 ∼ S2 and
Γ2 ⊢ t2 ≈ T (v). By the (assign) evaluation rule, we have ⟨ S1 , x = e ⟩ ⇓ ⟨ S2[ℓx 7→ v] , () ⟩. We need
to show that Γ2[x 7→ t2] ∼ S2[ℓx 7→ v]. This follows from the fact that Γ2 ⊢ t1 ≈ t2 by assumption
and that type equivalence is an equivalence relation (x is the only variable we need to check for the
∼-condition).

Next we prove soundness for statements by induction on derivations.

• (expr-stmt) This follows directly from soundness for expressions

• (let-[mut]) By the IH, there is a store S2 and a value v such that ⟨ S1 , e ⟩ ⇓ ⟨ S2 , v ⟩ and Γ2 ∼ S2 and
Γ2 ⊢ t ≈ T (v). By the (let) evaluation rule ⟨ S1 , let [mut] x = e ⟩ ⇓ S2[ℓx 7→ v]. It follows immediately
that Γ2[x 7→ tm] ∼ S2[ℓx 7→ v]; in particular Γ2[x 7→ tm] ⊢ Γ(x) ≈ T (S2[ℓx 7→ v](ℓx)]).

Soundness of programs then follows immediately by induction on derivations using the (prog) rule.

4

