Course Introduction

Rust, In Practice and in Theory
Lecture 1

CAS CS 392 (M1)

Outline

» D1scuss the expectations of this course
» Look at what this course 1s about
» Workshop: Install Rust

» If you finish: Set up a Cargo project

Course Information

Minutiae

Instructor: Nathan Mull

Course Webpage: https://nmmull.github.10/CS392-525/1ndex.html

Midterm Date: March 6

https://nmmull.github.io/CS392-S25/index.html

Grade Breakdown

30% Assignments
40% Final Project (4 parts, 10% each)
20% Midterm Exam (1n class)

10% Participation

Disclaimer

Disclaimer

This 1s a new course. It's golng to be a bit
disorganized. I apprecilate your patience

Disclaimer

This 1s a new course. It's golng to be a bit
disorganized. I apprecilate your patience

I am not an expert of Rust. I'm learning a lot
myself. But I'm an expert in type theory. My goal 1S
to show you all how I learn PLs

Lectures

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

I will take attendance. You're allowed to miss 2-3 lectures

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

I will take attendance. You're allowed to miss 2-3 lectures

We'll spend the first part of the lecture reviewing the material you read about,
and then we'll go into a workshop/lab-style meeting during which you'll work on
the homework assignments or final projects or other 1n-class tasks

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

I will take attendance. You're allowed to miss 2-3 lectures

We'll spend the first part of the lecture reviewing the material you read about,
and then we'll go into a workshop/lab-style meeting during which you'll work on
the homework assignments or final projects or other 1n-class tasks

I want this course to be very collaborative. I'll expect that you're working 1n

sroups, pair/group programming, and one-on-one discussions with me and the other
students

Assignments

Assignments

Assignments will consist of eilther programming
exercises or larger programming tasks 1n Rust. We may
have 1-2 written assignments

Assignments

Assignments will consist of eilther programming
exercises or larger programming tasks 1n Rust. We may
have 1-2 written assignments

There are 8 total, I'll drop vour lowest two

Assignments

Assignments will consist of eilther programming
exercises or larger programming tasks 1n Rust. We may
have 1-2 written assignments

There are 8 total, I'll drop vour lowest two

Even 1f you pair/group program a problem, try to type
your own solution and cite who you worked with

Final Project

Final Project

The final project 1s an implementation of a subset of Rust in Rust

Final Project

The final project 1s an implementation of a subset of Rust in Rust

This will take up most of the second half of the course

Final Project

The final project 1s an implementation of a subset of Rust in Rust
This will take up most of the second half of the course

It has four parts: (1) parser, (2) evaluator, (3) type/borrow
checker, (4) extension of your choosing (you cannot drop any part)

Final Project

The final project 1s an implementation of a subset of Rust in Rust
This will take up most of the second half of the course

It has four parts: (1) parser, (2) evaluator, (3) type/borrow
checker, (4) extension of your choosing (you cannot drop any part)

By the end of the course, you should have a working interpreter

Participation

The participation part of the grade 1s made up of:

» Attendance
» Pre-lecture quizzes

» Participation 1n class discussion and online

Grading

You'll submit assignments via Gradescope, but there will
be no autograders (or only very simple autograders)

Grading

You'll submit assignments via Gradescope, but there will
be no autograders (or only very simple autograders)

I'll be looking at most of the code by hand and
commenting on 1t (1t's a small course and I want to see
your code)

Grading

You'll submit assignments via Gradescope, but there will
be no autograders (or only very simple autograders)

I'll be looking at most of the code by hand and
commenting on 1t (1t's a small course and I want to see
your code)

(If you convince me you've learned something, you'll almost certainly get an A 1n the course)

Course Communication

Course Communication

We have a Piazza page for the course, please keep an
eye on 1t for course-related updates

Course Communication

We have a Piazza page for the course, please keep an
eye on 1t for course-related updates

I won't respond to emails regarding material, but you
can emall me 1f you have logistical questions

Course Webpage

https://nmmull.github.10/CS5392-S25/1ndex.html

The course webpage will have all material, 1links to
reading, etcetera

Make sure to check 1t frequently

https://nmmull.github.io/CS392-S25/index.html

Questions?

If I miss anything, ask on Piazza

Remember: This 1s a small, experimental course. If

you have suggestions on the course, please let me
Know

By continuing 1in this course you're agreeing to all these conditions

Last thing: What's your name?

Name:
Year:
Interest 1n CS:

Interest outside of CS:

Take 1 minute to think about 1t, and then we'll go around the room

What is this course?

The ldea

IT you took CS320 last semester, then the concept
should be familiar:

1. Learn Rust (a somewhat difficult PL)

. Implement Rust (in Rust, to check our understanding)

A Word of Warning

A Word of Warning

This 1s not an 1ntroductory programming course

A Word of Warning

This 1s not an 1ntroductory programming course

Some things will move very fast (I'll assume you'll
be able to write simple programs within the first
week)

A Word of Warning

This 1s not an 1ntroductory programming course

Some things will move very fast (I'll assume you'll
be able to write simple programs within the first
week)

Some things will move very slow (We'll dwell a bit on
things like memory management)

What's Rust?

What's Rust?

Rust 1s a type-safe memory-safe PL

What's Rust?

Rust 1s a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

What's Rust?

Rust 1s a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

It's an alternative to C or C++ which can be used 1n
production settings for rapid development without fear of
crashes or memory leaks

About Rust

Developed by Graydon Hoare out of Mozilla in the 2000s
(originally implemented 1n 0Caml)

It became stable (in particular with 1ts type system)
1n the late 2010s

The Rust Foundation was started i1n 2021 and 1s the m

basis for Rust information and adoption today

It's community members are called Rustacians, which 1S Mozillc |3
the basis for the unofficial mascot Ferris the crab

Why Rust?

Why Rust?

1. Rust 1s weird

Why Rust?

1. Rust 1s weird

It uses a unique type system to achieve 1ts memory safety, which
programmers often have to wrestle with

Why Rust?

1. Rust 1s weird

It uses a unique type system to achieve 1ts memory safety, which
programmers often have to wrestle with

2. Rust 1s becoming popular

Why Rust?

1. Rust 1s weird

It uses a unique type system to achieve 1ts memory safety, which
programmers often have to wrestle with

2. Rust 1s becoming popular

Firefox, Dropbox, Yelp, Amazon (along with lots of others) are
all adopting Rust in large-scale projects

Example: Rust being Weird

e

void swap(char =xxx, char sxxy) { fn swap(x : &mut String, y : &mut String) A
char xz = %xx: let z : String = *Xx;
*X = kV; *X = kVY;
Xy = Z; Xy = 7}
I3 }
C Rust

Rust has a notion of references, but 1t's not possible
to write the swap-string-pointer function

A badly defined pointer-swap could cause a memory
leak. Rust's type system disallows this by fiat

Example: Sustainabilli

An 1nteresting (slightly
dated) article out of AWS

Rust 1s performant, energy
efficient and a whole 1ot
more 1nteresting than many
other options

Traditional

with Rust

Sas

Cloud (non-hyperscale)

Hyperscale

2010

| I
2012 2013

I
2014

I
2015 2016

I
2017

I
2018

I
2019 2020

2021
Energy Time | Mb |
(© C 1.00 () C 1.00 | (c) Pascal 1.00 |
(¢) Rust 1.03 (¢) Rust 1.04 (¢) Go 1.05 |
(c) C++ 1.34 (¢) C++ 1.56 ' ©C 1.1715
(c) Ada 1.85 ' (¢) Fortran 1.24* |
(v) Java 1.98 (v) Java 1.89 | (c) C++ 1.34 |
(c) Pasc . (¢) Chapel 2.14 | (c) Ada 147 |
(c) Chapel . 218 () Go 2.83 | (c) Rust 1.54 |
(v) Lisp 2.27 (c) Pascal 3.02 ' (v) Lisp 1.92 |
(¢c) Ocaml 2.40 (¢) Ocaml 3.09 | (c) Haskell 245 |
(c) Fortran 2.52 (v) C# 3.14 | (i) PHP 257 |
(c) Swift 2.79 (v) Lisp 3.40 ' (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 ' (i) Python 2.80
(v)C# 3.14 (c) Swift 4.20 | (c) Ocaml 2.82
(¢) Go 3.23 (¢) Fortran 4.20 L (v)Cs 285 |
(i) Dart . 3.83 (v) F# 6.30 | (i) Hack 3.34 |
(v) F# 413 (i) JavaScript 6.52 | (v) Racket 3.52 |
(i) JavaScript 4.45 (i) Dart 6.67 | (i) Ruby 397 |
(v) Racket 7.91 (v) Racket 11.27 ' (¢) Chapel 4.00 |
(i) TypeScript 21.50 (i) Hack 26.99 | (v)Fs 4.25
(i) Hack 24.02 (i) PHP 27.64 | (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 | (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 | (v)Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 ' (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 ' (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 | (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 | (i) Dart 8.64 |
L (i) Perl 79.58 . (i) Lua 8291 (i) Jruby 19.84 |

2022

https://aws.amazon.com/cn/blogs/opensource/sustainability—-with-rust/

Aside: How to learn a PL

Aside: How to learn a PL

We tend to learn PLs the "wrong" (fast) way,
1.e., reading tutorials and doing examples

Aside: How to learn a PL

wi3schools.com THE WORIE 'S LASGENT Wik DAVASOREN S1TE

' CSS Tutorial

Examples in Each Chapter

Thin €0 brrnd carbmra brabebe id €0 smarhin

We tend to learn PLs the "wrong" (fast) way,
1.e., reading tutorials and doing examples

=3k | 3 O lo " lng to Pjégi"am

In this course we want to learn Rust the
"r1ght" (slow) way, 1.e., formally describe
what Rust 1s doing

#

4 STATIC SEMANTICS FOR THE CORE 26

Match Rules

Ct pat = (VE,T) C+VEF exp =1 tynames VE C T of C
Clkpat=>exp =77

(14)

Comment: This rule allows new free type variables to enter the context.

These new type variables will be chosen, in effect, during the elaboration of

pat (i.e., in the inference of the first hypothesis). In particular, their choice

may have to be made to agree with type variables present in any explicit
type expression occurring within ezp (see rule 9).

Declarations Ctdec=FE

U = tyvars(tyvarseq)
C + U + valbind = VE VE' = Closc,aind VE UntyvarsVE =)
C + val tyvarseq valbind = VE' in Env

”ll

]

—
~— (15)
— C - typbind = TE -
C F type typbind = TE in Env
= C ®TE datbind = VE,TE V(t,VE') € RanTE, t ¢ (T of C)
e —— TFE maximises equality (17)
—_— C' I datatype datbind = (VE,TE) in Env
O ——
N
— C(longtycon) = (0,VE) TE = {tycon — (6, VE)} (18)

C' + datatype tycon -=- datatype longtycon = (VE,TE) in Env

"III
fl

C®TE + dathind = VE,TE V(t,VE') € RanTE, ¢ ¢ (T of C)
Ca® (VE,TE) \- dec = E TE maximises equality
C' I abstype datbind with dec end = Abs(TE, E)

(19)

Ct exbind = VE
C F exception ezbind = VE in Env

(20)

Aside: How to learn a PL

wi3schools.com

®

55 Tenoral
Pow e

Examples in Each Chapter

Thin €0 brrnd carbmra brabebe id €0 smarhin

We tend to learn PLs the "wrong" (fast) way,
1.e., reading tutorials and doing examples

_ wik: mgﬁﬁ .Laam ing to Program|

In this course we want to learn Rust the
"right" (slow) way, 1.e., formally describe The Definition of Standard ML
what Rust 1s doing

f

4 STATIC SEMANTICS FOR THE CORE 26

Match Rules

Ct pat = (VE,T) C+VEF exp =1 tynames VE C T of C
Clkpat=>exp =77

(14)

Comment: This rule allows new free type variables to enter the context.

These new type variables will be chosen, in effect, during the elaboration of

pat (i.e., in the inference of the first hypothesis). In particular, their choice

may have to be made to agree with type variables present in any explicit
type expression occurring within ezp (see rule 9).

Declarations Ctdec=FE

l(llll[]""l’

|

We won't learn many cool, advanced features of

i
l'l
|

U = tyvars(tyvarseq)
C + U + valbind = VE VE' = Closc,aind VE UntyvarsVE =)

-
——
R ———
f—— S
o []} R
Rust that ape usefu 1 1 n p Pactl Ce ———— C val tyvarseq valbind = VE' in Env
~— (15)
~— C'+ typbind = TE (16)
C F type typbind = TE in Env
e C ®TE dathind = VE,TE V(t,VE') € RanTE, t ¢ (T of C)
—— TE maximises equality ()
S— C' I datatype datbind = (VE,TE) in Env
O ——
fr—
Pr——
—— C(longtycon) = (0,VE) TE = {tycon — (0, VE)} (18)

C' + datatype tycon -=- datatype longtycon = (VE,TE) in Env

—

——

—
~————

/

i

C®TE + dathind = VE,TE V(t,VE') € RanTE, ¢ ¢ (T of C)
Ca® (VE,TE) \- dec = E TE maximises equality
C' I abstype datbind with dec end = Abs(TE, E)

(19)

Ct exbind = VE
C' | exception ezbind = VE in Env

(20)

Aside: How to learn a PL

w3schools.com

® aw e

Pow e

We tend to learn PLs the "wrong" (fast) way,
1.e., reading tutorials and doing examples

In this course we want to learn Rust the
"right" (slow) way, 1.e., formally describe The Definition of Standard ML
what Rust 1s doing

4 STATIC SEMANTICS FOR THE CORE 26

Match Rules

Ct pat = (VE,T) C+VEF exp =1 tynames VE C T of C
Clkpat=>exp =77

:

(14)

Comment: This rule allows new free type variables to enter the context.

These new type variables will be chosen, in effect, during the elaboration of

pat (i.e., in the inference of the first hypothesis). In particular, their choice

may have to be made to agree with type variables present in any explicit
type expression occurring within ezp (see rule 9).

Declarations Ctdec=FE

U = tyvars(tyvarseq)
C + U + valbind = VE VE' = Closc,aind VE UntyvarsVE =)

T

A

We won't learn many cool, advanced features of

il llllllllll

R t t h h h C + val tyvarseq valbind = VE' in Env
us dl are usertul 1n practice .
~— C'+ typbind = TE
C F type typbind = TE in Env (16)
e C®TEF datbind = VE,TE V(t,VE') € RanTE, t ¢ (T of C)
R TE maximises equality .
=' C' I datatype datbind = (VE,TE) in Env an
) ° = -
We will learn why Rust makes us tackle with the = ST
— C' + datatype tycon -=- datatype longtycon = (VE,TE) in Env

~—
~——cz
~~rmm—

C®TEF dathind = VE, TE V(t,VE') € RanTE, ¢ ¢ (T of C)
Ca® (VE,TE) \- dec = E TE maximises equality
C' I abstype datbind with dec end = Abs(TE, E)

type system, and how 1t works

(19)

Ct exbind = VE
C' | exception ezbind = VE in Env

(20)

How does i1t work?

How does i1t work?

Answer: Linear types (Affine types really), which 1s based on Linear logic of Girard
(1980s)

How does i1t work?

Answer: Linear types (Affine types really), which 1s based on Linear logic of Girard
(1980s)

Rough 1dea:

How does i1t work?

Answer: Linear types (Affine types really), which 1s based on Linear logic of Girard
(1980s)

Rough 1dea:

A function of type A —- B takes an A and gives a B

How does i1t work?

Answer: Linear types (Affine types really), which 1s based on Linear logic of Girard
(1980s)

Rough 1dea:
A function of type A —- B takes an A and gives a B

A function of type A - B consumes an A and gives a B

How does i1t work?

Answer: Linear types (Affine types really), which 1s based on Linear logic of Girard
(1980s)

Rough 1dea:
A function of type A —- B takes an A and gives a B
A function of type A - B consumes an A and gives a B

Roughly speaking, this ensures that data 1s never unnecessarily duplicated or thrown away

How does i1t work?

Answer: Linear types (Affine types really), which 1s based on Linear logic of Girard
(1980s)

Rough 1dea:
A function of type A - B takes an A and gives a B
A function of type A - B consumes an A and gives a B
Roughly speaking, this ensures that data 1s never unnecessarily duplicated or thrown away

This 1s exactly the kind of information we need to know to make sure that, e.g., there are
no dangling pointers without actually specifying 1t (Rust doesn't work exactly like this)

Workshop:
Install Rust
Set up a Cargo Project

The Task

Follow the 1n The Rust Programming Language (RPL) on
1nstalling rustup. If you're using windows I highly
recommend using WSL. If you finish, then follow the
tutorial 1n RPL called Hello, Cargo!

Note: This 1s how I'll take attendance, so please
make sure to talk to me before the end of lecture

