
CAS CS 392 (M1)

Course Introduction
Rust, in Practice and in Theory
Lecture 1

Outline

» Discuss the expectations of this course

» Look at what this course is about

» Workshop: Install Rust

» If you finish: Set up a Cargo project

Course Information

Minutiae

Instructor: Nathan Mull

Course Webpage: https://nmmull.github.io/CS392-S25/index.html

Midterm Date: March 6

https://nmmull.github.io/CS392-S25/index.html

Grade Breakdown

30% Assignments

40% Final Project (4 parts, 10% each)

20% Midterm Exam (in class)

10% Participation

Disclaimer

Disclaimer

This is a new course. It's going to be a bit
disorganized. I appreciate your patience

Disclaimer

This is a new course. It's going to be a bit
disorganized. I appreciate your patience

I am not an expert of Rust. I'm learning a lot
myself. But I'm an expert in type theory. My goal is
to show you all how I learn PLs

Lectures

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

I will take attendance. You're allowed to miss 2-3 lectures

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

I will take attendance. You're allowed to miss 2-3 lectures

We'll spend the first part of the lecture reviewing the material you read about,
and then we'll go into a workshop/lab-style meeting during which you'll work on
the homework assignments or final projects or other in-class tasks

Lectures

This course will be something like a flipped classroom/workshop hybrid. You'll
be expected to read before lecture and complete a short pre-lecture quiz

I will take attendance. You're allowed to miss 2-3 lectures

We'll spend the first part of the lecture reviewing the material you read about,
and then we'll go into a workshop/lab-style meeting during which you'll work on
the homework assignments or final projects or other in-class tasks

I want this course to be very collaborative. I'll expect that you're working in
groups, pair/group programming, and one-on-one discussions with me and the other
students

Assignments

Assignments

Assignments will consist of either programming
exercises or larger programming tasks in Rust. We may
have 1-2 written assignments

Assignments

Assignments will consist of either programming
exercises or larger programming tasks in Rust. We may
have 1-2 written assignments

There are 8 total, I'll drop your lowest two

Assignments

Assignments will consist of either programming
exercises or larger programming tasks in Rust. We may
have 1-2 written assignments

There are 8 total, I'll drop your lowest two

Even if you pair/group program a problem, try to type
your own solution and cite who you worked with

Final Project

Final Project

The final project is an implementation of a subset of Rust in Rust

Final Project

The final project is an implementation of a subset of Rust in Rust

This will take up most of the second half of the course

Final Project

The final project is an implementation of a subset of Rust in Rust

This will take up most of the second half of the course

It has four parts: (1) parser, (2) evaluator, (3) type/borrow
checker, (4) extension of your choosing (you cannot drop any part)

Final Project

The final project is an implementation of a subset of Rust in Rust

This will take up most of the second half of the course

It has four parts: (1) parser, (2) evaluator, (3) type/borrow
checker, (4) extension of your choosing (you cannot drop any part)

By the end of the course, you should have a working interpreter

Participation

The participation part of the grade is made up of:

» Attendance

» Pre-lecture quizzes

» Participation in class discussion and online

Grading

Grading

You'll submit assignments via Gradescope, but there will
be no autograders (or only very simple autograders)

Grading

You'll submit assignments via Gradescope, but there will
be no autograders (or only very simple autograders)

I'll be looking at most of the code by hand and
commenting on it (it's a small course and I want to see
your code)

Grading

You'll submit assignments via Gradescope, but there will
be no autograders (or only very simple autograders)

I'll be looking at most of the code by hand and
commenting on it (it's a small course and I want to see
your code)

(If you convince me you've learned something, you'll almost certainly get an A in the course)

Course Communication

Course Communication

We have a Piazza page for the course, please keep an
eye on it for course-related updates

Course Communication

We have a Piazza page for the course, please keep an
eye on it for course-related updates

I won't respond to emails regarding material, but you
can email me if you have logistical questions

Course Webpage

The course webpage will have all material, links to
reading, etcetera

Make sure to check it frequently

https://nmmull.github.io/CS392-S25/index.html

https://nmmull.github.io/CS392-S25/index.html

Questions?

If I miss anything, ask on Piazza

Remember: This is a small, experimental course. If
you have suggestions on the course, please let me
know

By continuing in this course you're agreeing to all these conditions

Last thing: What's your name?

Name:

Year:

Interest in CS:

Interest outside of CS:

Take 1 minute to think about it, and then we'll go around the room

What is this course?

The Idea

If you took CS320 last semester, then the concept
should be familiar:

1. Learn Rust (a somewhat difficult PL)

2. Implement Rust (in Rust, to check our understanding)

A Word of Warning

A Word of Warning

This is not an introductory programming course

A Word of Warning

This is not an introductory programming course

Some things will move very fast (I'll assume you'll
be able to write simple programs within the first
week)

A Word of Warning

This is not an introductory programming course

Some things will move very fast (I'll assume you'll
be able to write simple programs within the first
week)

Some things will move very slow (We'll dwell a bit on
things like memory management)

What's Rust?

What's Rust?

Rust is a type-safe memory-safe PL

What's Rust?

Rust is a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

What's Rust?

Rust is a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

It's an alternative to C or C++ which can be used in
production settings for rapid development without fear of
crashes or memory leaks

About Rust

Developed by Graydon Hoare out of Mozilla in the 2000s
(originally implemented in OCaml)

It became stable (in particular with its type system)
in the late 2010s

The Rust Foundation was started in 2021 and is the
basis for Rust information and adoption today

It's community members are called Rustacians, which is
the basis for the unofficial mascot Ferris the crab

Why Rust?

Why Rust?

1. Rust is weird

Why Rust?

1. Rust is weird

It uses a unique type system to achieve its memory safety, which
programmers often have to wrestle with

Why Rust?

1. Rust is weird

It uses a unique type system to achieve its memory safety, which
programmers often have to wrestle with

2. Rust is becoming popular

Why Rust?

1. Rust is weird

It uses a unique type system to achieve its memory safety, which
programmers often have to wrestle with

2. Rust is becoming popular

Firefox, Dropbox, Yelp, Amazon (along with lots of others) are
all adopting Rust in large-scale projects

Example: Rust being Weird

Rust has a notion of references, but it's not possible
to write the swap-string-pointer function

A badly defined pointer-swap could cause a memory
leak. Rust's type system disallows this by fiat

void swap(char **x, char **y) {
 char *z = *x;
 *x = *y;
 *y = z;
}

fn swap(x : &mut String, y : &mut String) {
 let z : String = *x;
 *x = *y;
 *y = z;
}

C Rust

Example: Sustainability with Rust

An interesting (slightly
dated) article out of AWS

Rust is performant, energy
efficient and a whole lot
more interesting than many
other options

https://aws.amazon.com/cn/blogs/opensource/sustainability-with-rust/

Aside: How to learn a PL

Aside: How to learn a PL

We tend to learn PLs the "wrong" (fast) way,
i.e., reading tutorials and doing examples

Aside: How to learn a PL

We tend to learn PLs the "wrong" (fast) way,
i.e., reading tutorials and doing examples

In this course we want to learn Rust the
"right" (slow) way, i.e., formally describe
what Rust is doing

Aside: How to learn a PL

We tend to learn PLs the "wrong" (fast) way,
i.e., reading tutorials and doing examples

In this course we want to learn Rust the
"right" (slow) way, i.e., formally describe
what Rust is doing

We won't learn many cool, advanced features of
Rust that are useful in practice

Aside: How to learn a PL

We tend to learn PLs the "wrong" (fast) way,
i.e., reading tutorials and doing examples

In this course we want to learn Rust the
"right" (slow) way, i.e., formally describe
what Rust is doing

We won't learn many cool, advanced features of
Rust that are useful in practice

We will learn why Rust makes us tackle with the
type system, and how it works

How does it work?

How does it work?

Answer: Linear types (Affine types really), which is based on Linear logic of Girard
(1980s)

How does it work?

Answer: Linear types (Affine types really), which is based on Linear logic of Girard
(1980s)

Rough idea:

How does it work?

Answer: Linear types (Affine types really), which is based on Linear logic of Girard
(1980s)

Rough idea:

A function of type takes an and gives a A → B A B

How does it work?

Answer: Linear types (Affine types really), which is based on Linear logic of Girard
(1980s)

Rough idea:

A function of type takes an and gives a A → B A B

A function of type B consumes an and gives a A ⊸ A B

How does it work?

Answer: Linear types (Affine types really), which is based on Linear logic of Girard
(1980s)

Rough idea:

A function of type takes an and gives a A → B A B

A function of type B consumes an and gives a A ⊸ A B

Roughly speaking, this ensures that data is never unnecessarily duplicated or thrown away

How does it work?

Answer: Linear types (Affine types really), which is based on Linear logic of Girard
(1980s)

Rough idea:

A function of type takes an and gives a A → B A B

A function of type B consumes an and gives a A ⊸ A B

Roughly speaking, this ensures that data is never unnecessarily duplicated or thrown away

This is exactly the kind of information we need to know to make sure that, e.g., there are
no dangling pointers without actually specifying it (Rust doesn't work exactly like this)

Workshop:
 Install Rust
 Set up a Cargo Project

The Task

Follow the in The Rust Programming Language (RPL) on
installing rustup. If you're using windows I highly
recommend using WSL. If you finish, then follow the
tutorial in RPL called Hello, Cargo!

Note: This is how I'll take attendance, so please
make sure to talk to me before the end of lecture

