
CAS CS 392 (M1)

Rust: The Basics
Rust, in Practice and in Theory
Lecture 2

Outline

» Go over the basics of Rust, emphasizing syntax

» Remind ourselves how to build parse trees

» Workshop: Build a guessing game

» If you finish: Programming Practice (Homework)

Recap

Recap: What's Rust?

Recap: What's Rust?

Rust is a type-safe memory-safe PL

Recap: What's Rust?

Rust is a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

Recap: What's Rust?

Rust is a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

It's an alternative to C or C++ which can be used in
production settings for rapid development without fear of
crashes or memory leaks

Recap: How to learn a PL

We tend to learn PLs the "wrong" (fast) way,
i.e., reading tutorials and doing examples

In this course we want to learn Rust the
"right" (slow) way, i.e., formally describe
what Rust is doing

We won't learn many cool, advanced features of
Rust that are useful in practice

We will learn why Rust makes us tackle with the
type system in order to write safe code

The Basics

Rust as a basic PL

Rust has all the usual suspects for basic programs:

» variables and constants

» functions

» control-flow

Variables and Constants

Variable are immutable by default, and can be
shadowed

Variables are written in snake_case by convention and
constants in SCREAMING_SNAKE_CASE

let x = 2; // immutable variable
let x : i8 = 2; // type annotated (immutable) variable
let rec x = 2; // mutable variable
const X : i32 = 2; // constant

Variables (Grammar)

We'll start, even now, thinking about how this syntax
can be expressed as a BNF grammar

<var-decl> ::= let <var-ident> = <expr>
 | let mut <var-ident> = <expr>
<var-ident> ::= ; snake_case ;

<const-decl> ::= const <const-ident> : <ty> = <expr>
<const-ident> ::= ; SCREAMING_SNAKE_CASE ;

A Quick Reminder: Parse Trees and Derivations

let var_name = 2 + 2

Primitive Types

Integers: i32 is the default

Floats: f64 is the default

Characters: char, e.g., 'x'

Booleans: bool, e.g., true and false

Tuples: e.g., (i32, i32), where p.i is the accessor for the ith component

Arrays: e.g., [bool; 5], arrays are fixed-length and l[i] is the accessor

(with all the usual operators)

Data Types (Grammar)

<ty> ::= <scalar-ty> | <compound-ty>
<scalar-ty> ::= <int-ty> | <float-ty> | bool | char
<int-ty> ::= <sint-ty> | <uint-ty>
<sint-ty> ::= i16 | i32 | i64 | i128 | isize
<uint-ty> ::= u16 | u32 | u64 | u128 | usize
<float-ty> ::= f32 | f64
<compound-ty> ::= <tuple-ty> | <array-ty>
<tys> ::= ϵ | <ty> | <ty> , <tys>
<tuple-ty> ::= (<tys>)
<array-ty> ::= [<ty>；<expr>]

A Quick Reminder: Parse Trees and Derivations

(i32, i32,)

Literals (Grammar)
<int-lit> ::= ; see docs ;
<float-lit> ::= ; see docs ;
<char-lit> ::= ; see docs ;
<bool-lit> ::= true | false

<exprs> ::= ϵ | <expr> | <expr> , <exprs>
<tuple-lit> ::= (<exprs>)
<field> ::= ; see docs ;
<expr> ::= <expr>.<field>

<list-lit> ::= [<exprs>]
<expr> ::= <expr> [<expr>]

<lit> ::= <int-lit> | <float-lit>
 | <char-lit> | <bool-lit>
 | <tuple-lit> | <string-lit>

Functions

Function definitions are standard. Parameters and output must be annotated

The body of a function is called a block which consists of a sequence of ;-
separated statements

The last statement (if it is an expression) is the return value of function

fn sum_of_squares(x : u32, y : u32) -> u32 {
 let x_squared = x * x;
 let y_squared = y * y;
 x_squared + y_squared // NO SEMICOLON
}

Functions (Grammar)
<fun-decl> ::= fn <fun-ident>(<params>) <block>
 | fn <fun-ident>(<params>) -> <ty> <block>
<params> ::= ϵ | <param> | <param> , <params>
<param> ::= <var-ident> : <ty>
<block> ::= { <stmts> }
<fun-ident> ::= ; snake_case ;

Statements (Grammar)
<stmts> ::= ϵ
 | <expr>
 | <fun-decl> <stmts>
 | <stmt> ；<stmts>
 | <expr> ；<stmts>
 | <expr-no-sc> <stmts>
<stmt> ::= <var-decl> | <const-decl>
<expr-no-sc> ::= <if-expr> | <while-expr> | <for-expr>

Control Flow

Control flow is standard

The most important thing to note is that control-flow is defined by
expressions

fn is_prime(n: i32) -> bool {
 for i in 2..n {
 if n % i == 0 {
 return false
 }
 }
 true
}

Control Flow (Grammar)

<if-expr> ::= if <expr> <block> <else-if-expr>
<else-if-expr> ::= ϵ | else <block> | else if <block> <else-if-expr>
<while-expr> ::= while <expr> <block>
<for-expr> ::= for <var-ident> in <expr> <block>
<ret-expr> ::= return <expr>
<expr> ::= <if-expr> | <while-expr> | <for-expr> | <ret-expr>

A Quick Reminder: Parse Trees and Derivations

if true { 2 }

Practice Problem (from Assignment 1)

Write a function is_perfect_cube which determines if
an i32 is a perfect cube. Write it both in terms of
simple control flow and in terms of type casting
(this will require lookup in, say, Rust by Example)

Workshop:
Programming a Guessing Game

The Task

Work through the tutorial on building a guessing game
in RPL. I'll walk around and answer questions. If
you finish (or get bored) you can work on this week's
assignment instead

Note: This is how I'll take attendance, so please
make sure to talk to me before the end of lecture

