Rust: The Basics

Rust, In Practice and in Theory
Lecture 2

CAS CS 392 (M1)

Outline

» G0 over the basics of Rust, emphasizing syntax
» Remind ourselves how to build parse trees
» Workshop: Build a guessing game

» If you finish: Programming Practice (Homework)

Recap: What's Rust?

Recap: What's Rust?

Rust 1s a type-safe memory-safe PL

Recap: What's Rust?

Rust 1s a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

Recap: What's Rust?

Rust 1s a type-safe memory-safe PL

It's possible to write simple clean code that's guaranteed
to be free of memory bugs

It's an alternative to C or C++ which can be used 1n
production settings for rapid development without fear of
crashes or memory leaks

Recap: How to learn a PL

w3schools.com

® aw e

' €SS Tutorial

<55 I T i e ke 0 W L Bl

CAK s e HTHL s b o) s e bk
Rl el b s £ B b b 2 Ak

Examples in Each Chapter

hin €0 bsrrat srbnra brabe. s amnane

We tend to learn PLs the "wrong" (fast) way,
1.e., reading tutorials and doing examples

In this course we want to learn Rust the
"right" (slow) way, 1.e., formally describe The Definition of Standard ML

what Rust 1s doing

4 STATIC SEMANTICS FOR THE CORE 26

Match Rules

Ct pat = (VE,T) C+VEF exp =1 tynames VE C T of C
Cltpat=>exp =77

:

(14)

Comment: This rule allows new free type variables to enter the context.

These new type variables will be chosen, in effect, during the elaboration of

pat (i.e., in the inference of the first hypothesis). In particular, their choice

may have to be made to agree with type variables present in any explicit
type expression occurring within ezp (see rule 9).

Declarations Ctdec=FE

U = tyvars(tyvarseq)
C + U + valbind = VE VE' = Closc,aind VE UntyvarsVE =)

N

Mwml

We won't learn many cool, advanced features of

[J ®
C + val tyvarseq valbind = VE' in Env
Rust that are useful 1n pr‘actlce .
~— C'+ typbind = TE (16)
C F type typbind = TE in Env
=< C @ TE - datbind = VE,TE ~ V(t,VE') € RanTE, t ¢ (T of C)
e TE maximises equality 1)
=' C' I datatype datbind = (VE,TE) in Env (
] L] ———
—— C(longtycon) = (0,VE) TE = {tycon — (0, VE)} (18)
— C' + datatype tycon -=- datatype longtycon = (VE,TE) in Env
° ° —— C@®TE t datbind = VE,TE V(t,VE') € RanTE, t ¢ (T of C)
Ca® (VE,TE) \- dec = E TE maximises equality
type system in order to write safe code FE
(19)
Ct exbind = VE (20)

C' | exception ezbind = VE in Env

The Basics

Rust as a basic PL

Rust has all the usual suspects for basic programs:
» variables and constants
» functions

» control-flow

Variables and Constants

let x = 2; // immutable variable

let x : 18 = 2; // type annotated (immutable) variable
let rec x = 2; // mutable variable

const X : 132 = 23 // constant

Variable are immutable by default, and can be
shadowed

Variables are written 1n snake case by convention and
constants 1n SCREAMING SNAKE CASE

Variables (Grammar)

let <var-ident> = <expr>
let mut <var-ident> = <expr>
<var-ident> ::= ; snake case ;

<var-decl>

<const-decl> const <const-ident> : <ty> = <expr>
<const-ident> ::= ; SCREAMING SNAKE CASE ;

We'll start, even now, thinking about how this syntax
can be expressed as a BNF grammar

A Quick Reminder: Parse Trees and Derivations

let var name = 2 + ¢

Primitive Types

Integers: 132 1s the default

Floats: f64 1s the default

Characters: char, e.g., "x'

Booleans: bool, e.g., true and false

Tuples: e.g., (132, 132), where p.1 1s the accessor for the 1th component

Arrays: e.g., [bool; 5], arrays are fixed-length and 1[1] 1s the accessor

(with all the usual operators)

Data Types (Grammar)

<ty> : := <scalar-ty> | <compound-ty>
<scalar-ty> ::= <int-ty> | <float-ty> | bool | char
<int-ty> ::= <sint-ty> | <uint-ty>

<sint-ty> ::= 116 | 132 | i64 | i128 | isize
<uint-ty> ::= ul6 | u3d2 | u64 | ul28 | usize
<float-ty> ::= £32 | f64

<compound-ty> ::= <tuple-ty> | <array-ty>

<tys> ::= € | <ty> | <ty> , <tys>

<tuple-ty> = (<tys>)

<array-ty> c 1= [<ty>;, <expr>]

A Quick Reminder: Parse Trees and Derivations

(i32, i32,)

Literals (Grammar)

<int-1lit> ::= : see docs ;
<float-1lit> ::= : see docs ;

<char-1it> ::= ; see docs ;

<bool-1it> ::= true | false

<exprs> ::= € | <expr> | <expr> , <exprs>
<tuple-1lit> ::= (<exprs>)

<field> ::= ; see docs ;

<expr> : 1= <expr>.<field>
<list-1lit> ::= [<exprs>]

<expr> : o= <exXpr> | <expr> |

<lit> <int-1lit> | <float-1lit>

| <char-1it> | <bool-1lit>
| <tuple-1lit> | <string-1lit>

Functions

fn sum of squares(x : u32, y : u32) =-> u32 {
let x squared = x * X;
let y squared =y * y;
X squared + y squared // NO SEMICOLON

}

Function definitions are standard. Parameters and output must be annotated

The body of a function 1s called a block which consists of a sequence of ;-
separated statements

The last statement (1if 1t 1s an expression) 1s the return value of function

Functions (Grammar)

<fun-decl> fn <fun-ident>(<params>) <block>

fn <fun-ident>(<params>) -> <ty> <block>

<params> € | <param> | <param> , <params>
<param> = <var-ident> : <ty>
<block> = { <stmts> }

<fun-ident> ::= ; snake case ;

Statements (Grammar)

<stmts> = €

| <expr>

| <fun-decl> <stmts>

| <stmt> ; <stmts>

| <expr> ; <stmts>

| <expr-no-sc> <stmts>
<stmt> = <var-decl> | <const-decl>

<expr-no-sc> <if-expr> | <while-expr> | <for-expr>

Control Flow

fn 1s prime(n: 132) -> bool {
for 1 1n 2..n {
1ifn% 1==0 {
return false

}

true

Control flow 1s standard

The most 1mportant thing to note 1s that control-flow 1s defined by
expressions

Control Flow (Grammar)

<if-expr> ::= 1f <expr> <block> <else-i1f-expr>

<else-if-expr> ::= € | else <block> | else if <block> <else-if-expr>
<while-expr> ::= while <expr> <block>

<for-expr> ::= for <var-ident> 1n <expr> <block>

<ret-expr> ::= return <expr>

<expr> ::= <if-expr> | <while-expr> | <for-expr> | <ret-expr>

A Quick Reminder: Parse Trees and Derivations

1f true § 2 %

Practice Problem (from Assignment 1)

Write a function 1s perfect cube which determines 1if
an 132 1s a perfect cube. Write 1t both in terms of
simple control flow and 1n terms of type casting
(this will require lookup 1n, say, Rust by Example)

Workshop:
Programming a Guessing Game

The Task

Work through the tutorial on building a guessing game
1n RPL. I'll walk around and answer questions. If
vou finish (or get bored) you can work on this week's
assignment 1nstead

Note: This 1s how I'll take attendance, so please
make sure to talk to me before the end of lecture

