
CAS CS 392 (M1)

The Stack and Heap
Rust, in Practice and in Theory 
Lecture 3



Outline

» Discuss a couple ways of managing memory 

» Look at ownership rules, and how they are influenced 
by the layout of memory 

» Workshop: Finish Assignment 1 

» If you finish: slow_primes and RustViz



Memory Layout



The Punchline: Ownership

The notion of ownership is based on two simple rules 

1. Every value has one owner at any given time 

2. When the owner of a value goes out of scope, any 
memory associated with the value is freed



Areas of Memory

1. Static Memory. Where global variables are stored 

2. The Stack. Where data local to a function call are 
stored 

3. The Heap. Where persistent dynamically-size data 
are stored
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Typical Memory Layout

The stack typically  
grows down and the 
heap grows up 

The stack is very 
small (something 
like 8mb) 

https://www.javatpoint.com/memory-layout-in-c



The Stack



The Stack

The stack stores local variables for 
function calls 

It can hold activation records or call 
frames which include extra data 
required by the function 

It's fast to access, it's "right" there 

It's well-organized, no wasted space

https://commons.wikimedia.org/wiki/File:Call_stack_layout.svg



What goes on the stack?

Anything whose size is fixed and known at compile time: 

» primitives like numbers, string slices, arrays 

» references 

and which is not needed after the control is returned 
to the function caller



Basic Example
fn bar() { 
    let _z = 4; 
    let _a = 5; 
} 

fn foo() { 
    let _x = 2; 
    let _y = 3; 
    bar(); 
} 

fn main() { 
    let _w = 1; 
    foo() 
}

Mem



The Problem

Not everything has fixed size known at compile time 

We often want data we can refer to after a function 
call has returned control 



Growing Data Example Mem

fn indirection(n: i32, s: &mut String) { 
    let _y = 2; 
    for _ in 0..n { 
        *s += "okay"; 
    } 
} 

fn main() { 
    let mut x : String = String::default(); 
    indirection(10, &mut x); 
    println!("{x}"); 
} 



Disappearing Data Example Mem

fn fill(s : &mut String){ 
    let filler = "okay"; 
    *s = String::from(filler); 
} 

fn main() { 
    let mut x : String = String::default(); 
    fill(&mut x); 
}



The Heap



The Heap

The heap stores data that cannot be put on the stack (or 
in static memory) 

It's slow to access, we have to follow references 

It's less efficiently organized, it may become fragmented 
over time 

But there's a lot of it, and it's very flexible



What goes on the heap?

Dynamically-sized persistent data: 

» String, Vec, Map 

» pretty much everything else 

We need the heap to do "real" programming



Memory Allocator

In rough terms, a memory allocator 
figures out how to layout data in the 
heap. This means: 

» finding an open spot of the right 
size 

» returning the address of the 
beginning of the spot chosen

Mem



Memory Allocator Mem

int main(void) { 
  int *x = (int*)malloc(sizeof(int)); 
  int *y = (int*)malloc(sizeof(int)); 
  int *z = (int*)malloc(sizeof(int)); 
  free(y); 
  int *a = (int*)malloc(sizeof(int) * 10); 
  int *b = (int*)malloc(sizeof(int)); 
  free(x); 
  free(z); 
  free(a); 
  free(b); 
  return 0; 
} 



Growing Data Example Mem

fn indirection(n: i32, s: &mut String) { 
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Disappearing Data Example Mem

fn fill(s : &mut String){ 
    let filler = "okay"; 
    *s = String::from(filler); 
} 

fn main() { 
    let mut x : String = String::default(); 
    fill(&mut x); 
}



Memory Bugs

Once we are referring to data on the heap, we're also able 
to create more errors: 

» Dangling pointers, references to invalid data 

» Memory Leaks, losing references to valid data 

» Data races, changing the same data with multiple 
processes



Memory Management



Four Kinds of Memory Managment

1. Explicit allocation/deallocation (C) 

2. Ownership (Rust) 

3. Automatic Reference Counting (Swift) 

4. Garbage Collection (Python, Java, OCaml, ...)



Explicit Allocation

The approach of "traditional" systems languages like C: the 
programmer is in charge of managing allocation/deallocation 

malloc allocates data on the heap and free deallocates it 
so it can be used again. 

Benefits: It's simple and general 

Downsides: It's highly prone to error



Dangling Pointer (C)

int main(void) {
  int *x = (int*)malloc(sizeof(int));
  *x = 2;
  free(x);
  printf("%d\n", *x);
  return 0;
}

Mem



Memory Leak Mem

void leak(void) {
  int *x = (int*)malloc(sizeof(int));
  *x = 2;
  printf("%d\n", *x);
}

int main(void) {
  leak();
  return 0;
}



Garbage Collection

The approach of modern high-level languages: periodically 
check the stack for what heap data is still valid and then 
clean up the heap 

Benefits: Easy on the programmer, works fine in most cases 

Downsides: Very little programmer control, difficult to 
performance optimize



Rough Sketch

Step 1: DFS from stack and mark 

Step 2: Sweep the heap and clear 
unmarked data

Mem



Automatic Reference Counting

The approach taken by Swift (and C++ via smart 
pointers): Count the number of references to a piece 
of heap data, free when it's down to zero 

Benefits: Easy on the programmer like GC 

Downsides: Reference cycles, overhead (?), still not 
that much control



Rough Sketch Mem
class Stuff {
    init() {
        print("allocating")
    }
    deinit {
        print("deallocating")
    }
}

var r1 : Stuff? = Stuff()
var r2 : Stuff? = r1
var r3 : Stuff? = r2

r1 = nil
r2 = nil
r3 = nil



Ownership

The approach taken by Rust: follow these two rules 

1. Every value has one owner at any given time 

2. When the owner of a value goes out of scope, any memory 
associated with the value is freed 

Benefits: User-control without requiring explicit allocation 

Downsides: Unintuitive at first



The Big Question

If we're not explicitly allocating/deallocating 
memory, when should it happen? 

Rust's answer: as soon as a variable/parameter 
referring to it goes out of scope.



The Point

Ownership allows this stupid-simple deallocation pattern 

If only one variable owns the data, then if they go out 
of scope, no one owns the data

https://github.com/rustviz/rustviz/blob/master/src/svg_generator/example.png



But this stupid-simple, cheap approach means 
that we can't do many "intuitive" things



No References to the Same Data
fn main() {
    let x = String::from("hello world");
    let y = x;
    println!("{x}");
    println!("{y}");
}

It's not possible to have two references to the same 
piece of data 

(this doesn't seem like a problem here)



A Note on the Philosophy of Rust

The type/borrow checker disallows a lot of "natural" programs 

Working with your hand tied behind your back makes you better 
with that one hand

int main(void) {
  char* x = "hello world";
  char* y = x;
  printf("%s\n", x);
  printf("%s\n", y);
  return 0;
}



Workshop: Finish Assignment 1



Workshop

A couple options today: 

» Finish assignment 1 

» Look at crate slow_primes and see if you can speed up your 
nth_prime function 

» Continue reading about borrowing 

» Install rustviz


