
CAS CS 392 (M1)

The Stack and Heap
Rust, in Practice and in Theory
Lecture 3

Outline

» Discuss a couple ways of managing memory

» Look at ownership rules, and how they are influenced
by the layout of memory

» Workshop: Finish Assignment 1

» If you finish: slow_primes and RustViz

Memory Layout

The Punchline: Ownership

The notion of ownership is based on two simple rules

1. Every value has one owner at any given time

2. When the owner of a value goes out of scope, any
memory associated with the value is freed

Areas of Memory

1. Static Memory. Where global variables are stored

2. The Stack. Where data local to a function call are
stored

3. The Heap. Where persistent dynamically-size data
are stored

Areas of Memory

1. Static Memory. Where global variables are stored

2. The Stack. Where data local to a function call are
stored

3. The Heap. Where persistent dynamically-size data
are stored

Typical Memory Layout

The stack typically
grows down and the
heap grows up

The stack is very
small (something
like 8mb)

https://www.javatpoint.com/memory-layout-in-c

The Stack

The Stack

The stack stores local variables for
function calls

It can hold activation records or call
frames which include extra data
required by the function

It's fast to access, it's "right" there

It's well-organized, no wasted space

https://commons.wikimedia.org/wiki/File:Call_stack_layout.svg

What goes on the stack?

Anything whose size is fixed and known at compile time:

» primitives like numbers, string slices, arrays

» references

and which is not needed after the control is returned
to the function caller

Basic Example
fn bar() {
 let _z = 4;
 let _a = 5;
}

fn foo() {
 let _x = 2;
 let _y = 3;
 bar();
}

fn main() {
 let _w = 1;
 foo()
}

Mem

The Problem

Not everything has fixed size known at compile time

We often want data we can refer to after a function
call has returned control

Growing Data Example Mem

fn indirection(n: i32, s: &mut String) {
 let _y = 2;
 for _ in 0..n {
 *s += "okay";
 }
}

fn main() {
 let mut x : String = String::default();
 indirection(10, &mut x);
 println!("{x}");
}

Disappearing Data Example Mem

fn fill(s : &mut String){
 let filler = "okay";
 *s = String::from(filler);
}

fn main() {
 let mut x : String = String::default();
 fill(&mut x);
}

The Heap

The Heap

The heap stores data that cannot be put on the stack (or
in static memory)

It's slow to access, we have to follow references

It's less efficiently organized, it may become fragmented
over time

But there's a lot of it, and it's very flexible

What goes on the heap?

Dynamically-sized persistent data:

» String, Vec, Map

» pretty much everything else

We need the heap to do "real" programming

Memory Allocator

In rough terms, a memory allocator
figures out how to layout data in the
heap. This means:

» finding an open spot of the right
size

» returning the address of the
beginning of the spot chosen

Mem

Memory Allocator Mem

int main(void) {
 int *x = (int*)malloc(sizeof(int));
 int *y = (int*)malloc(sizeof(int));
 int *z = (int*)malloc(sizeof(int));
 free(y);
 int *a = (int*)malloc(sizeof(int) * 10);
 int *b = (int*)malloc(sizeof(int));
 free(x);
 free(z);
 free(a);
 free(b);
 return 0;
}

Growing Data Example Mem

fn indirection(n: i32, s: &mut String) {
 let _y = 2;
 for _ in 0..n {
 *s += "okay";
 }
}

fn main() {
 let mut x : String = String::default();
 indirection(10, &mut x);
 println!("{x}");
}

Disappearing Data Example Mem

fn fill(s : &mut String){
 let filler = "okay";
 *s = String::from(filler);
}

fn main() {
 let mut x : String = String::default();
 fill(&mut x);
}

Memory Bugs

Once we are referring to data on the heap, we're also able
to create more errors:

» Dangling pointers, references to invalid data

» Memory Leaks, losing references to valid data

» Data races, changing the same data with multiple
processes

Memory Management

Four Kinds of Memory Managment

1. Explicit allocation/deallocation (C)

2. Ownership (Rust)

3. Automatic Reference Counting (Swift)

4. Garbage Collection (Python, Java, OCaml, ...)

Explicit Allocation

The approach of "traditional" systems languages like C: the
programmer is in charge of managing allocation/deallocation

malloc allocates data on the heap and free deallocates it
so it can be used again.

Benefits: It's simple and general

Downsides: It's highly prone to error

Dangling Pointer (C)

int main(void) {
 int *x = (int*)malloc(sizeof(int));
 *x = 2;
 free(x);
 printf("%d\n", *x);
 return 0;
}

Mem

Memory Leak Mem

void leak(void) {
 int *x = (int*)malloc(sizeof(int));
 *x = 2;
 printf("%d\n", *x);
}

int main(void) {
 leak();
 return 0;
}

Garbage Collection

The approach of modern high-level languages: periodically
check the stack for what heap data is still valid and then
clean up the heap

Benefits: Easy on the programmer, works fine in most cases

Downsides: Very little programmer control, difficult to
performance optimize

Rough Sketch

Step 1: DFS from stack and mark

Step 2: Sweep the heap and clear
unmarked data

Mem

Automatic Reference Counting

The approach taken by Swift (and C++ via smart
pointers): Count the number of references to a piece
of heap data, free when it's down to zero

Benefits: Easy on the programmer like GC

Downsides: Reference cycles, overhead (?), still not
that much control

Rough Sketch Mem
class Stuff {
 init() {
 print("allocating")
 }
 deinit {
 print("deallocating")
 }
}

var r1 : Stuff? = Stuff()
var r2 : Stuff? = r1
var r3 : Stuff? = r2

r1 = nil
r2 = nil
r3 = nil

Ownership

The approach taken by Rust: follow these two rules

1. Every value has one owner at any given time

2. When the owner of a value goes out of scope, any memory
associated with the value is freed

Benefits: User-control without requiring explicit allocation

Downsides: Unintuitive at first

The Big Question

If we're not explicitly allocating/deallocating
memory, when should it happen?

Rust's answer: as soon as a variable/parameter
referring to it goes out of scope.

The Point

Ownership allows this stupid-simple deallocation pattern

If only one variable owns the data, then if they go out
of scope, no one owns the data

https://github.com/rustviz/rustviz/blob/master/src/svg_generator/example.png

But this stupid-simple, cheap approach means
that we can't do many "intuitive" things

No References to the Same Data
fn main() {
 let x = String::from("hello world");
 let y = x;
 println!("{x}");
 println!("{y}");
}

It's not possible to have two references to the same
piece of data

(this doesn't seem like a problem here)

A Note on the Philosophy of Rust

The type/borrow checker disallows a lot of "natural" programs

Working with your hand tied behind your back makes you better
with that one hand

int main(void) {
 char* x = "hello world";
 char* y = x;
 printf("%s\n", x);
 printf("%s\n", y);
 return 0;
}

Workshop: Finish Assignment 1

Workshop

A couple options today:

» Finish assignment 1

» Look at crate slow_primes and see if you can speed up your
nth_prime function

» Continue reading about borrowing

» Install rustviz

