
CAS CS 392 (M1)

References and Borrowing
Rust, in Practice and in Theory
Lecture 4

Outline

» Discuss Ownership and Borrowing

» Workshop: RustViz

Ownership

Recall: Ownership

The notion of ownership is based on two simple rules

1. Every value has one owner at any given time

2. When the owner of a value goes out of scope, any
memory associated with the value is freed

Recall: The Big Question

If we're not explicitly allocating/deallocating
memory, when should it happen?

Rust's answer: as soon as a variable/parameter
referring to it goes out of scope.

Recall: The Point

Ownership allows this stupid-simple deallocation pattern

If only one variable owns the data, then if they go out
of scope, no one owns the data

https://github.com/rustviz/rustviz/blob/master/src/svg_generator/example.png

Drop

For data on the heap, when a variable goes out of
scope, Rust calls a function called drop on its value
to return the memory

(It's like adding free(x) at the end of the block)

fn main() {
 let x = String::from("x");
}

Drop

There is also an implicit drop call when a value is
replaced.

Again, drop applies to values

fn main() {
 let mut x = String::from("x");
 x = String::from("y");
 println!("{x}");
}

Drop (weird case)

What about this case? Should we drop the String "x"?

Should we drop before or after evaluating the RHS of
the assignment?

fn main() {
 let mut x = String::from("x");
 x = String::from("y") + &x;
 println!("{x}");
}

Move

For data on the heap, memory
needs to be returned when the
owner goes out of scope

Data on the heap must be moved
on assignment (really, the
pointer must be given up)

y owns the one copy of the
string that x originally owned

fn main() {
 let x = String::from("x")
 let y = x;
 println!("{x}");
 println!("{y}");
}

Move

Moves also happen at return
values

Ownership is transferred to
the parameter of foo, and
then given to y as the
return value of foo

fn foo(mut x : String) -> String {
 x.push_str("y");
 x
}

fn main() {
 let x = String::from("x");
 let y = foo(x);
 println!("{0}", y);
}

Copy

For data on the stack,
there is no memory to
return

Data on stack can be copied
on assignment

x and y both own a copy of
the value 5

fn main() {
 let x = 5;
 let y = x;
 println!("{x}");
 println!("{y}");
}

What's copied and what's moved?

Short answer: Stack data is copied, heap data is
moved

Long answer: Everything is moved except for those
types which implement the Copy trait

(we'll talk about traits later, they're like Type
classes or interfaces)

Borrowing

We don't really need borrowing

Borrowing is, in some
sense, a convenience

We can always pass
around ownership

(Immutable borrows
become more valuable in
concurrent settings)

fn length(x : String) -> (String, i32) {
 let mut count = 0;
 for _ in x.chars() {
 count += 1;
 }
 (x, count)
}

fn main() {
 let x = String::from("xyz");
 let y = length(x);
 println!("{}", y.1);
}

Immutable References
A reference is like a
pointer, guaranteed to
point at a valid value

References can be used
like the actual value

I prefer to think of
them as an immutable
"view" of a value

fn length(x : &String) -> i32 {
 let mut count = 0;
 for _ in x.chars() {
 count += 1;
 }
 count
}

fn main() {
 let x : String = String::from("xyz");
 let y = length(&x);
 println!("{}", y);
}

The Picture

In the above picture s has access without taking
ownership

We can have as many immutable references we want

A Note on Dereferencing

It is also possible to
dereference, and this looks a
bit more like a pointer, but the
behavior can be a bit unclear

Deref is a trait (like Copy) and
the behavior of dereferencing
can include implicit coercions

fn foo(x : &String) {
 let _ : &String = x;
 let _ : String = *x;
 let _ : str = **x;
}

Mutable References

Mutable references are
the same, except that
we're allowed to update
the associated value

We can only have one
mutable reference at a
time

fn main() {
 let mut s = String::from("hello");

 change(&mut s);
}

fn change(some_string: &mut String) {
 some_string.push_str(", world");
}

No Data Races

There can be no immutable references if there is a single mutable
reference

No immutable reference can get different "views" of the same data

fn main() {
 let mut s = String::from("hello");
 let r1 = &s;
 let r2 = &s;
 let r3 = &mut s;
 println!("{}, {}, and {}", r1, r2, r3);
}

No Dangling References
We cannot use references
data within the scope of
the function as return
values

(We'll see that lifetimes
are actually what cause
the compile-time error)

fn main() {
 let reference_to_nothing = dangle();
}

fn dangle() -> &String {
 let s = String::from("hello");

 &s
}

Summary

Borrowing ensures that we don't have to pass around
ownership in order to work with data.

We're allowed EITHER one mutable reference OR zero or
more immutable references

Workshop: RustViz

Workshop

Install rustviz, try out some of the more interesting
examples.

(Very sorry assignment 2 is not ready)

https://github.com/rustviz/rustviz

