
CAS CS 392 (M1)

Structures and Enumerations
Rust, in Practice and in Theory
Lecture 5

Outline

Discuss structures and enumerations

Look at issues of ownership and borrowing with
regards to structures and enumerations

Workshop: Assignment 2

Slices

Slices let you refer to a contiguous chunk of a
collection

They're just a special kind of reference, and they
follow similar rules as references

fn main() {
 let s = String::from("long string");
 println!("{}", &s[2..8]) // prints: ng str
}

Slices and Borrowing

You can have multiple overlapping mutable slices...

fn main() {
 let mut s = String::from("long string");
 let a : &mut str = &mut s[1..4];
 a.make_ascii_uppercase();
 let b : &mut str = &mut s[3..8];
 b.make_ascii_lowercase();
 println!("{}", &s) // prints: LONg string
}

Slices and Borrowing

But a slice still counts a reference...

(Rationale: Slices cannot move data)

fn main() {
 let mut s = String::from("long string");
 let a : &mut str = &mut s[1..4];
 a.make_ascii_uppercase();
 let _c : &mut String = &mut s;
 println!("{}", &a)
}

Common Pattern

We can pass references of strings as slices, and we can return
slices (there's an issue with lifetimes here, we won't get into
yet)

fn grab(s: &str) -> &str {
 &s[1..4]
}

fn main() {
 let s = String::from("long string");
 let a : &str = grab(&s); // a refers to s
 // cannot drop(s) because a is borrowing from s
 println!("{}", &a)
}

Structures

Structures are unordered, named, fixed-size groups of data

This allows us to make new types for type-driven
development

struct Player {
 name: String,
 score: i32,
}

let p = Player {
 name: String::from("Ash"),
 score: 0,
}

Defining Structures (Syntax)

Structure identifiers must be capitalized

Note that we can define "unit-like" structure types with
without fields (distinct syntactically from no fields)

<stmts> ::= <stmt-no-sc> <stmts>
<stmt> ::= struct <struct-ident>
<stmt-no-sc> ::= struct <struct-ident> { <ft-pairs> }
<ft-pairs> ::= ϵ | <ft-pair> | <ft-pair> , <ft-pairs>
<ft-pair> ::= <var-ident> : <ty>

Instantiating Structures (Syntax)

(just for the heck of it, I'll probably stop
formalizing the syntax)

<expr> ::= <struct-ident>
 | <struct-ident> { <fv-pairs> }
<fv-pairs> ::= ϵ | <fv-pair> | <fv-pair> , <fv-pairs>
<fv-pairs> ::= <var-ident> : <expr>

Field Access/Update

We can use dot notation to access and update fields of a structure

Accessing can move values

struct User {
 a: String,
 b: String,
}

fn main() {
 let mut u = User {a: "test".to_string(), b: "ing".to_string()};
 let x : String = u.a;
 u.b = String::from("er");
 println!("{}", u.a)
}

Borrowing Structure Fields

We can have both mutable and immutable references to
fields in a structure

struct User {
 a: String,
 b: String,
}

fn main() {
 let mut u = User {a: "test".to_string(), b: "ing".to_string()};
 let x : &String = &u.a;
 let y : &mut String = &mut u.b;
 *y = String::from("er");
 println!("{}", {x})
}

struct User {
 a: String,
 b: String,
}

fn update(u : &mut User) {
 u.b = String::from("er")
}

fn main() {
 let mut u = User {a: "test".to_string(), b: "ing".to_string()};
 let x : &String = &u.a;
 update(&mut u);
 println!("{}", {x})
}

Borrowing a Struct

Borrowing a structure means
borrowing every field

Borrowing a Struct

And this includes
deep values, not just
fields

(the error here is
not very useful)

struct A { b : B }
struct B { i : i32 }

fn main() {
 let mut a = A {b: B {i:10}};
 let n : &i32 = &a.b.i;
 let a_ref : &mut A = &mut a;
 println!("{}", n);
}

Again, this works

We can have multiple
mutable references to
non-intersecting parts
of a structure

struct A { b : B, i : i32}
struct B { i : i32 }

fn main() {
 let mut a = A {i: 20, b: B {i:10}};
 let n : &mut i32 = &mut a.b.i;
 let m : &mut i32 = &mut a.i;
 *n += 1;
 *m += 2;
 println!("{} {}", a.i, a.b.i);
}

No Partial Mutability

We can't selectively
choose fields to be
mutable

If we borrow a
structure, we can mutate
any part of it

struct U { a: i32, b: i32 }

fn update (u : &mut U) {
 u.a += 1;
 u.b -= 1;
}

fn main() {
 let mut u = U {a:0, b:0};
 update(&mut u);
 println!("{}, {}", u.a, u.b);
}

Structures and the Stack

Remember, unless otherwise specified, everything is
put on the stack. This means structures as well

This means we can't create recursive structures (yet)

struct List {
 head: i32,
 tail: Option<List>,
}

what is the size
of a List?

Aside: Derived Traits and Debug

Traits allow us to abstract
behaviors of given types

Derived traits are a meta-
programming technique in
which "obvious" traits can be
implemented without any work

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let scale = 2;
 let rect1 = Rectangle {
 width: dbg!(30 * scale),
 height: 50,
 };

 dbg!(&rect1);
}

Methods
We can define
methods and
associated
functions on
structures

struct Rectangle {width: u32,height: u32}

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
 fn square(size: u32) -> Self {
 Self {
 width: size,
 height: size,
 }
 }
}

fn main() {
 let rect1 = Rectangle {width: 30, height: 50};
 let _a = rect1.area();
 let _s = Rectangle::square(5);
}

Methods and Ownership

In terms of ownership, we should think of calling a method as
calling a function with a (mutable) reference

This means that methods can return references to x within itself

x = method(&x, ...)

x.method(...) ≈
x = method(&mut x, ...)

or

Enumerations

Enumerates describe
possible
"shapes" (i.e.,
constructors) of the
data

Constructors can hold
(named) data

enum OS {
 BSD,
 MacOS(u32, u32),
 Linux {
 major: u32,
 minor: u32,
 }
}

Pattern Matching

We use match expressions to match on enumerations

Matches must be exhaustive

(There are a lot of fancy pattern matching tools, use them if you want)

fn supported(o : OS) -> bool {
 match o {
 OS::BSD => false,
 OS::MacOS(major, minor) => major >= 10 && minor >= 3,
 OS::Linux {major, .. }=> major >= 33,
 }
}

Enumerations and Ownership

Values can be moved out of constructors

enum A {
 X(String)
}

fn main() {
 let a = A::X(String::from("inner string"));
 let s = match a { A::X(s) => s };
 println!("{}", s);
 match a { A::X(s) => println!("{}", s) };
}

References and Pattern Matching

We can bind by reference during pattern matching

enum A {
 X(String, String)
}

fn main() {
 let il = String::from("left inner string");
 let ir = String::from("right inner string");
 let mut a = A::X(il, ir);
 let s : &String = match a { A::X(ref il, _) => il };
 let a_ref : &mut A = &mut a;
 println!("{}", s);
}

Options and Results

We have the usual types for dealing with errors

(along with some nice operators like ? for working in
the monad)

enum Option<T> {
 None,
 Some(T),
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

Workshop: Assignment 2

Workshop

If you haven't gotten started on assignment 2, nows a
good time. I'll walk around and see how everyone is
doing on it.

(And take attendance)

