
CAS CS 392 (M1)

Structures and Enumerations
Rust, in Practice and in Theory
Lecture 5

Outline

Discuss structures and enumerations

Look at issues of ownership and borrowing with
regards to structures and enumerations

Workshop: Assignment 2

Slices

Slices let you refer to a contiguous chunk of a
collection

They're just a special kind of reference, and they
follow similar rules as references

fn main() {

 let s = String::from("long string");

 println!("{}", &s[2..8]) // prints: ng str

}

Slices and Borrowing

You can have multiple overlapping mutable slices...

fn main() {

 let mut s = String::from("long string");

 let a : &mut str = &mut s[1..4];

 a.make_ascii_uppercase();

 let b : &mut str = &mut s[3..8];

 b.make_ascii_lowercase();

 println!("{}", &s) // prints: LONg string

}

Slices and Borrowing

But a slice still counts a reference...

(Rationale: Slices cannot move data)

fn main() {

 let mut s = String::from("long string");

 let a : &mut str = &mut s[1..4];

 a.make_ascii_uppercase();

 let _c : &mut String = &mut s;

 println!("{}", &a)

}

Common Pattern

We can pass references of strings as slices, and we can return
slices (there's an issue with lifetimes here, we won't get into
yet)

fn grab(s: &str) -> &str {

 &s[1..4]

}

fn main() {

 let s = String::from("long string");

 let a : &str = grab(&s); // a refers to s

 // cannot drop(s) because a is borrowing from s

 println!("{}", &a)

}

Structures

Structures are unordered, named, fixed-size groups of data

This allows us to make new types for type-driven
development

struct Player {
 name: String,
 score: i32,
}

let p = Player {
 name: String::from("Ash"),
 score: 0,
}

Defining Structures (Syntax)

Structure identifiers must be capitalized

Note that we can define "unit-like" structure types with
without fields (distinct syntactically from no fields)

<stmts> ::= <stmt-no-sc> <stmts>
<stmt> ::= struct <struct-ident>
<stmt-no-sc> ::= struct <struct-ident> { <ft-pairs> }
<ft-pairs> ::= ϵ | <ft-pair> | <ft-pair> , <ft-pairs>
<ft-pair> ::= <var-ident> : <ty>

Instantiating Structures (Syntax)

(just for the heck of it, I'll probably stop
formalizing the syntax)

<expr> ::= <struct-ident>
 | <struct-ident> { <fv-pairs> }
<fv-pairs> ::= ϵ | <fv-pair> | <fv-pair> , <fv-pairs>
<fv-pairs> ::= <var-ident> : <expr>

Field Access/Update

We can use dot notation to access and update fields of a structure

Accessing can move values

struct User {

 a: String,

 b: String,

}

fn main() {

 let mut u = User {a: "test".to_string(), b: "ing".to_string()};

 let x : String = u.a;

 u.b = String::from("er");

 println!("{}", u.a)

}

Borrowing Structure Fields

We can have both mutable and immutable references to
fields in a structure

struct User {

 a: String,

 b: String,

}

fn main() {

 let mut u = User {a: "test".to_string(), b: "ing".to_string()};

 let x : &String = &u.a;

 let y : &mut String = &mut u.b;

 *y = String::from("er");

 println!("{}", {x})

}

struct User {

 a: String,

 b: String,

}

fn update(u : &mut User) {

 u.b = String::from("er")

}

fn main() {

 let mut u = User {a: "test".to_string(), b: "ing".to_string()};

 let x : &String = &u.a;

 update(&mut u);

 println!("{}", {x})

}

Borrowing a Struct

Borrowing a structure means
borrowing every field

Borrowing a Struct

And this includes
deep values, not just
fields

(the error here is
not very useful)

struct A { b : B }

struct B { i : i32 }

fn main() {

 let mut a = A {b: B {i:10}};

 let n : &i32 = &a.b.i;

 let a_ref : &mut A = &mut a;

 println!("{}", n);

}

Again, this works

We can have multiple
mutable references to
non-intersecting parts
of a structure

struct A { b : B, i : i32}

struct B { i : i32 }

fn main() {

 let mut a = A {i: 20, b: B {i:10}};

 let n : &mut i32 = &mut a.b.i;

 let m : &mut i32 = &mut a.i;

 *n += 1;

 *m += 2;

 println!("{} {}", a.i, a.b.i);

}

No Partial Mutability

We can't selectively
choose fields to be
mutable

If we borrow a
structure, we can mutate
any part of it

struct U { a: i32, b: i32 }

fn update (u : &mut U) {

 u.a += 1;

 u.b -= 1;

}

fn main() {

 let mut u = U {a:0, b:0};

 update(&mut u);

 println!("{}, {}", u.a, u.b);

}

Structures and the Stack

Remember, unless otherwise specified, everything is
put on the stack. This means structures as well

This means we can't create recursive structures (yet)

struct List {

 head: i32,

 tail: Option<List>,

}

what is the size
of a List?

Aside: Derived Traits and Debug

Traits allow us to abstract
behaviors of given types

Derived traits are a meta-
programming technique in
which "obvious" traits can be
implemented without any work

#[derive(Debug)]

struct Rectangle {

 width: u32,

 height: u32,

}

fn main() {

 let scale = 2;

 let rect1 = Rectangle {

 width: dbg!(30 * scale),

 height: 50,

 };

 dbg!(&rect1);

}

Methods
We can define
methods and
associated
functions on
structures

struct Rectangle {width: u32,height: u32}

impl Rectangle {

 fn area(&self) -> u32 {

 self.width * self.height

 }

 fn square(size: u32) -> Self {

 Self {

 width: size,

 height: size,

 }

 }

}

fn main() {

 let rect1 = Rectangle {width: 30, height: 50};

 let _a = rect1.area();

 let _s = Rectangle::square(5);

}

Methods and Ownership

In terms of ownership, we should think of calling a method as
calling a function with a (mutable) reference

This means that methods can return references to x within itself

x = method(&x, ...)

x.method(...) ≈
x = method(&mut x, ...)

or

Enumerations

Enumerates describe
possible
"shapes" (i.e.,
constructors) of the
data

Constructors can hold
(named) data

enum OS {

 BSD,

 MacOS(u32, u32),

 Linux {

 major: u32,

 minor: u32,

 }

}

Pattern Matching

We use match expressions to match on enumerations

Matches must be exhaustive

(There are a lot of fancy pattern matching tools, use them if you want)

fn supported(o : OS) -> bool {

 match o {

 OS::BSD => false,

 OS::MacOS(major, minor) => major >= 10 && minor >= 3,

 OS::Linux {major, .. }=> major >= 33,

 }

}

Enumerations and Ownership

Values can be moved out of constructors

enum A {

 X(String)

}

fn main() {

 let a = A::X(String::from("inner string"));

 let s = match a { A::X(s) => s };

 println!("{}", s);

 match a { A::X(s) => println!("{}", s) };

}

References and Pattern Matching

We can bind by reference during pattern matching

enum A {

 X(String, String)

}

fn main() {

 let il = String::from("left inner string");

 let ir = String::from("right inner string");

 let mut a = A::X(il, ir);

 let s : &String = match a { A::X(ref il, _) => il };

 let a_ref : &mut A = &mut a;

 println!("{}", s);

}

Options and Results

We have the usual types for dealing with errors

(along with some nice operators like ? for working in
the monad)

enum Option<T> {

 None,

 Some(T),

}

enum Result<T, E> {

 Ok(T),

 Err(E),

}

Workshop: Assignment 2

Workshop

If you haven't gotten started on assignment 2, nows a
good time. I'll walk around and see how everyone is
doing on it.

(And take attendance)

