
CAS CS 392 (M1)

Collections
Rust, in Practice and in Theory 
Lecture 6



Outline

Discuss collections (very briefly, I imagine these 
should be pretty familiar)


Workshop: A couple options



Errata: Slices and Borrowing

You cannot have multiple overlapping slices...

fn main() {

    let mut s = String::from("long string");

    let a : &mut str = &mut s[1..4];

    let b : &mut str = &mut s[3..8];

    a.make_ascii_uppercase();

    b.make_ascii_lowercase();

    println!("{}", &s) // prints: LONg string

}



Aside: Flow Sensitivity

Borrow Checking is flow sensitive. The type of a variable changes 
according to its position in control flow.


Type checking is usually flow insensitive. The position of a term in 
an expression does not affect it's type, only the type of the super-
expression.

fn f() -> i32 { 

    let mut x = 1;

    let y = &x;

    x = x + 1;

    x + *y

}

fn f() -> i32 { 

    let mut x = 1;

    let y = &x;

    x = x + 1;

    x

}



my apologies...



Vectors

A vector is a contiguous collection of data in memory


They have the usual methods (check the docs)

    let v: Vec<i32> = Vec::new();   // creating a new vector

    let  mut v = vec![1, 2, 3];     // from array shorthand

    v.push(5);                      // append to end

    let x: Option<i32> = v.pop();   // removing from end

    let x: &i32 = &v[2];            // unsafe indexing

    let x: Option<&i32> = v.get(2); // safe indexing



Vectors and Borrowing

A reference to an element in a vector counts as a borrow 
of the entire vector


(Apologies again for mixing this up in the case of slices)

    let first = &v[0];

    v.push(6);

    let x = first;



Iteration

We can iterate over vectors in 
the usual way


(note the dereference operator *)


Why don't we iterate by index?

    let mut x = 0;

    for i in &v {

        x += i

    }

    for i in &mut v {

        *i += 10

    }



Question

Can we iterate over a vector that might be updated 
intermittently?




Strings

Strings are complicated...


We're not going to worry about it too much...

    let hello = String::from("السلام علیكم");

    let hello = String::from("Dobrý den");

    let hello = String::from("Hello");

    let hello = String::from("שלום");

    let hello = String::from("नमस्ते");

    let hello = String::from("こんにちは");

    let hello = String::from("안녕하세요");

    let hello = String::from("你好");

    let hello = String::from("Olá");

    let hello = String::from("Здравствуйте");

    let hello = String::from("Hola");



Hash Maps

The standard library also has hash maps with the usual 
interface


Note that insertion moves values whereas accessing does not


(See the docs for more examples)

    use std::collections::HashMap;

    let mut h : HashMap<String,i32> = HashMap::new(); // create

    h.insert(String::from("ten"), 10);                // insert (moves values into h)

    let x : Option<&i32> = h.get("ten");              // access (does not consume key)



Workshop 

Pair programming: Word counter (where a word is a contiguous sequence 
of non-whitespace characters)


Complete assignment 2


Crash course on forth (https://skilldrick.github.io/easyforth/)


gforth manual (https://gforth.org/manual/)


Read about linked lists (https://rust-unofficial.github.io/too-many-
lists/index.html)

https://skilldrick.github.io/easyforth/
https://gforth.org/manual/
https://rust-unofficial.github.io/too-many-lists/index.html
https://rust-unofficial.github.io/too-many-lists/index.html

