
CAS CS 392 (M1)

Collections
Rust, in Practice and in Theory
Lecture 6

Outline

Discuss collections (very briefly, I imagine these
should be pretty familiar)

Workshop: A couple options

Errata: Slices and Borrowing

You cannot have multiple overlapping slices...

fn main() {
 let mut s = String::from("long string");
 let a : &mut str = &mut s[1..4];
 let b : &mut str = &mut s[3..8];
 a.make_ascii_uppercase();
 b.make_ascii_lowercase();
 println!("{}", &s) // prints: LONg string
}

Aside: Flow Sensitivity

Borrow Checking is flow sensitive. The type of a variable changes
according to its position in control flow.

Type checking is usually flow insensitive. The position of a term in
an expression does not affect it's type, only the type of the super-
expression.

fn f() -> i32 {
 let mut x = 1;
 let y = &x;
 x = x + 1;
 x + *y
}

fn f() -> i32 {
 let mut x = 1;
 let y = &x;
 x = x + 1;
 x
}

my apologies...

Vectors

A vector is a contiguous collection of data in memory

They have the usual methods (check the docs)

 let v: Vec<i32> = Vec::new(); // creating a new vector
 let mut v = vec![1, 2, 3]; // from array shorthand
 v.push(5); // append to end
 let x: Option<i32> = v.pop(); // removing from end
 let x: &i32 = &v[2]; // unsafe indexing
 let x: Option<&i32> = v.get(2); // safe indexing

Vectors and Borrowing

A reference to an element in a vector counts as a borrow
of the entire vector

(Apologies again for mixing this up in the case of slices)

 let first = &v[0];
 v.push(6);
 let x = first;

Iteration

We can iterate over vectors in
the usual way

(note the dereference operator *)

Why don't we iterate by index?

 let mut x = 0;
 for i in &v {
 x += i
 }
 for i in &mut v {
 *i += 10
 }

Question

Can we iterate over a vector that might be updated
intermittently?

Strings

Strings are complicated...

We're not going to worry about it too much...

 let hello = String::from("السلام علیكم");
 let hello = String::from("Dobrý den");
 let hello = String::from("Hello");
 let hello = String::from("שלום");
 let hello = String::from("नमस्ते");
 let hello = String::from("こんにちは");
 let hello = String::from("안녕하세요");
 let hello = String::from("你好");
 let hello = String::from("Olá");
 let hello = String::from("Здравствуйте");
 let hello = String::from("Hola");

Hash Maps

The standard library also has hash maps with the usual
interface

Note that insertion moves values whereas accessing does not

(See the docs for more examples)

 use std::collections::HashMap;
 let mut h : HashMap<String,i32> = HashMap::new(); // create
 h.insert(String::from("ten"), 10); // insert (moves values into h)
 let x : Option<&i32> = h.get("ten"); // access (does not consume key)

Workshop

Pair programming: Word counter (where a word is a contiguous sequence
of non-whitespace characters)

Complete assignment 2

Crash course on forth (https://skilldrick.github.io/easyforth/)

gforth manual (https://gforth.org/manual/)

Read about linked lists (https://rust-unofficial.github.io/too-many-
lists/index.html)

https://skilldrick.github.io/easyforth/
https://gforth.org/manual/
https://rust-unofficial.github.io/too-many-lists/index.html
https://rust-unofficial.github.io/too-many-lists/index.html

