
CAS CS 392

Traits
Rust, in Practice and in Theory

Lecture 7

Generic Types

Generic types allow us to write parametrically
polymorphic functions

use std::collections::VecDeque;

fn reverse<T>(v: Vec<T>) -> VecDeque<T> {

 let mut out = VecDeque::new();

 for item in v {

 out.push_front(item);

 }

 out

}

Generic Structs and Enums

We can also define generic structures and
enumerations (just like parametric types in
OCaml)

Note the syntax for multiple type parameters

struct Point<T> {

 x: T,

 y: T,

}

enum Result<T, E> {

 Ok(T),

 Err(E),

}

Generic Methods

We can define generic methods, we can give type
parameters to implementations

We can also specify concrete types for generic structures
and enumerations

impl<T> Point<T> {

 fn x(&self) -> &T {

 &self.x

 }

}

impl Point<f32> {

 fn norm(&self) -> f32 {

 (self.x.powi(2)

 + self.y.powi(2))

 .sqrt()

 }

}

Monomorphization

Rust's compiler performs monomorphization on generic structures and
functions

This means fast code, but (potentially) slow compile times and
(potentially) large binaries

enum Option_i32 {

 Some(i32),

 None,

}

enum Option_f64 {

 Some(f64),

 None,

}

⟹
enum Option<T> {

 Some(T),

 None,

}

Traits

High Level

Traits allow us to define shared behavior of types

On the surface they are very simple, but Rust
provides quite a bit of functionality with Traits

pub trait Summary {

 fn summarize(&self) -> String;

}

Implementing Traits

We can implement traits for any type using

impl <Trait_id> for <TypeId> <Block>

pub struct NewsArticle {

 pub headline: String,

 pub location: String,

 pub author: String,

 pub content: String,

}

impl Summary for NewsArticle {

 fn summarize(&self) -> String {

 format!("{}, by {} ({})", self.headline, self.author, self.location)

 }

}

Useful Traits

» Copy: copying instead of moving on assignment

» Clone: cloning

» Display: user-end printing

» Debug: programmer-end printing

» Deref: dereferencing operator (a bit tricky)

» PartialEq: (==)

» PartialOrd: (<), (<=), (>), (>=)...

Copying and Cloning

Copy is not overloadable (it's bit-wise)

Cloning is explicit (but can be derived)

struct MyStruct;

impl Copy for MyStruct { }

impl Clone for MyStruct {

 fn clone(&self) -> MyStruct {

 *self

 }

}

Derived Traits

Many basic traits can be derived (only traits
with derive pragmas)

Example: A structure is copyable/clonable if
all of its fields are

#[derive(Copy, Clone)]

struct MyStruct;

Existential Types

Rust supports a kind of existential type by
allowing us to specify a trait as a type

pub fn notify(item: &impl Summary) {

 println!("Breaking news! {}", item.summarize());

}
fn returns_summarizable() -> impl Summary {

 Tweet {

 username: String::from("horse_ebooks"),

 content: String::from(

 "of course, as you probably already know, people",

),

 reply: false,

 retweet: false,

 }

}

Existential Types

We should think of impl Summary as " T . T is
summarizable"

As noted in the text, this does not allow for
dynamic dispatch (why?)

∃

pub fn notify(item: &impl Summary) {

...

}

fn returns_summarizable() -> impl Summary {

...

}

Using Traits

Trait Bounds

Trait bounds allow us to restrict type
parameters

We should read "<T: Trait>" as "for any T which
implements Trait"

pub fn notify<T: Summary>(item: &T) {

 println!("Breaking news! {}", item.summarize());

}

Where can we put Trait Bounds?

Seemingly anywhere

We can have a trait bound wherever we've
introduced a type parameter

struct Foo<T> {

 value: T

}

impl<T: Clone> Foo<T> { }

okay not okay

"where" Syntax

When in doubt, we can write all trait bounds in
where clauses (including trait bounds on Self)

fn some_function<T, U>(t: &T, u: &U) -> i32

where

 T: Display + Clone,

 U: Clone + Debug,

{

fn some_function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) -> i32 {

Advanced: Blanket Implementations

Blanket Implementations allow us to implement a
trait for apply types satisfying another trait

impl<T: Display> ToString for T {

 // --snip--

}

Advanced: Supertraits

We can also put trait bounds on traits, giving
us a notion of supertraits

This allows us to build trait hierarchies.

pub trait Ord: Eq + PartialOrd {

 // Required method

 fn cmp(&self, other: &Self) -> Ordering;

 ...

}

https://doc.rust-lang.org/stable/std/cmp/trait.Eq.html
https://doc.rust-lang.org/stable/std/cmp/trait.PartialOrd.html
https://doc.rust-lang.org/stable/std/cmp/enum.Ordering.html

Workshop

Homework 3 (I'll do a short demo if there's
interest)

Practice Problem: Define a Magma (type with a
binary operator) trait which has a default
implementation for values which implement the Add
trait. Then define a sum function on implementers
of Magmas (either over vectors or iterators)
which returns an Option to handle the empty case

