
CAS CS 392

Traits
Rust, in Practice and in Theory
Lecture 7

Generic Types

Generic types allow us to write parametrically
polymorphic functions

use std::collections::VecDeque;

fn reverse<T>(v: Vec<T>) -> VecDeque<T> {
 let mut out = VecDeque::new();
 for item in v {
 out.push_front(item);
 }
 out
}

Generic Structs and Enums

We can also define generic structures and
enumerations (just like parametric types in
OCaml)

Note the syntax for multiple type parameters

struct Point<T> {
 x: T,
 y: T,
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

Generic Methods

We can define generic methods, we can give type
parameters to implementations

We can also specify concrete types for generic structures
and enumerations

impl<T> Point<T> {
 fn x(&self) -> &T {
 &self.x
 }
}

impl Point<f32> {
 fn norm(&self) -> f32 {
 (self.x.powi(2)
 + self.y.powi(2))
 .sqrt()
 }
}

Monomorphization

Rust's compiler performs monomorphization on generic structures and
functions

This means fast code, but (potentially) slow compile times and
(potentially) large binaries

enum Option_i32 {
 Some(i32),
 None,
}

enum Option_f64 {
 Some(f64),
 None,
}

⟹
enum Option<T> {
 Some(T),
 None,
}

Traits

High Level

Traits allow us to define shared behavior of types

On the surface they are very simple, but Rust
provides quite a bit of functionality with Traits

pub trait Summary {
 fn summarize(&self) -> String;
}

Implementing Traits

We can implement traits for any type using

impl <Trait_id> for <TypeId> <Block>

pub struct NewsArticle {
 pub headline: String,
 pub location: String,
 pub author: String,
 pub content: String,
}

impl Summary for NewsArticle {
 fn summarize(&self) -> String {
 format!("{}, by {} ({})", self.headline, self.author, self.location)
 }
}

Useful Traits

» Copy: copying instead of moving on assignment

» Clone: cloning

» Display: user-end printing

» Debug: programmer-end printing

» Deref: dereferencing operator (a bit tricky)

» PartialEq: (==)

» PartialOrd: (<), (<=), (>), (>=)...

Copying and Cloning

Copy is not overloadable (it's bit-wise)

Cloning is explicit (but can be derived)

struct MyStruct;

impl Copy for MyStruct { }

impl Clone for MyStruct {
 fn clone(&self) -> MyStruct {
 *self
 }
}

Derived Traits

Many basic traits can be derived (only traits
with derive pragmas)

Example: A structure is copyable/clonable if
all of its fields are

#[derive(Copy, Clone)]
struct MyStruct;

Existential Types

Rust supports a kind of existential type by
allowing us to specify a trait as a type

pub fn notify(item: &impl Summary) {
 println!("Breaking news! {}", item.summarize());
}
fn returns_summarizable() -> impl Summary {
 Tweet {
 username: String::from("horse_ebooks"),
 content: String::from(
 "of course, as you probably already know, people",
),
 reply: false,
 retweet: false,
 }
}

Existential Types

We should think of impl Summary as " T . T is
summarizable"

As noted in the text, this does not allow for
dynamic dispatch (why?)

∃

pub fn notify(item: &impl Summary) {
...

}

fn returns_summarizable() -> impl Summary {
...

}

Using Traits

Trait Bounds

Trait bounds allow us to restrict type
parameters

We should read "<T: Trait>" as "for any T which
implements Trait"

pub fn notify<T: Summary>(item: &T) {
 println!("Breaking news! {}", item.summarize());
}

Where can we put Trait Bounds?

Seemingly anywhere

We can have a trait bound wherever we've
introduced a type parameter

struct Foo<T> {
 value: T
}

impl<T: Clone> Foo<T> { }

okay not okay

"where" Syntax

When in doubt, we can write all trait bounds in
where clauses (including trait bounds on Self)

fn some_function<T, U>(t: &T, u: &U) -> i32
where
 T: Display + Clone,
 U: Clone + Debug,
{

fn some_function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) -> i32 {

Advanced: Blanket Implementations

Blanket Implementations allow us to implement a
trait for apply types satisfying another trait

impl<T: Display> ToString for T {
 // --snip--
}

Advanced: Supertraits

We can also put trait bounds on traits, giving
us a notion of supertraits

This allows us to build trait hierarchies.

pub trait Ord: Eq + PartialOrd {
 // Required method
 fn cmp(&self, other: &Self) -> Ordering;
 ...
}

https://doc.rust-lang.org/stable/std/cmp/trait.Eq.html
https://doc.rust-lang.org/stable/std/cmp/trait.PartialOrd.html
https://doc.rust-lang.org/stable/std/cmp/enum.Ordering.html

Workshop

Homework 3 (I'll do a short demo if there's
interest)

Practice Problem: Define a Magma (type with a
binary operator) trait which has a default
implementation for values which implement the Add
trait. Then define a sum function on implementers
of Magmas (either over vectors or iterators)
which returns an Option to handle the empty case

