
Closures and Iterators
CAS CS 392: Rust, in Theory and in Practice

February 13, 2025 (Lecture 8)

1 / 21

Outline

Closures

Iterators

Workshop

2 / 21

High Level

Closures are anonymous functions, like lambdas in Python:

fn square (x : i32) -> i32 { x * x }
let square = |x| { x * x }

The big difference: Closures can capture values, like closures in other
languages, but his becomes interesting with respect to ownership

3 / 21

Common Example: Higher-Order Functions

We can pass closures into higher-order functions like map and filter:

fn main() {
let v: Vec<i32> = vec![1, 2, 3, 4, 5];
for s in v.into_iter().map(|x| x * x) {

print!("{s} ")
}

}

// prints: 1 4 9 16 25

Note that map returns a Map struct which implements the Iterator trait

4 / 21

Common Example: Counter Maker

We can also return closures, but we have to be careful about types:

fn mk_counter() -> impl FnMut() -> i32 {
let mut count = 0;
return move || { count += 1; count }

}
fn main() {

let mut f = mk_counter();
println!("{}, {}", f(), f());

}
// prints: 1, 2

Note the use of existential type in return position, this is one case where
this pattern is useful.

5 / 21

Type Inference

For most closures, we don’t need to write type annotations:

let v: Vec<i32> = vec![1, 2, 3, 4, 5];
for s in v.into_iter().map(|x| x * x) { ...

That said, closures must be monomorphic:

// DOES NOT COMPILE
let example_closure = |x| x;
let s = example_closure(String::from("hello"));
let n = example_closure(5);

6 / 21

"Borrow" Inference

The compiler determines if a closure only need to immutably borrow:

let mut v = vec![1, 2, 3, 4, 5];
let immutable_borrow = &v;
|| println!("{}", v[0]); // unused closure
println!("{}", immutable_borrow[0]);
v.clear();

Same with mutable borrows:

// DOES NOT COMPILE
let mut v = vec![1, 2, 3, 4, 5];
let immutable_borrow = &v;
|| v.push(6);
println!("{}", immutable_borrow[0]);
v.clear();

Moving/borrowing happens when the closures is defined, not called
7 / 21

Moving Captured Values

We can force ownership of captured values with the move keyword:

fn mk_counter() -> impl FnMut() -> i32 {
let mut count = 0;
return move || { count += 1; count }

}

Note that count has copy semantics so the value isn’t moved out of the
closure, but it needs to take ownership in order for count to live longer
than the scope of mk_counter

We can’t selectively move/borrow captured values

8 / 21

Closures and Traits

let mut v = vec![1, 2, 3];
let f1 = || v; // FnOnce only
let f2 = || v.push(4); // Not Fn
let f3 = || println!("{}", v[0]); // All three

Closures are just structures which implement the following traits:

§ FnOnce: moves out captured values
§ FnMut: does not move values out captured values, mutably borrows

captured values
§ Fn: does not move values out, immutable borrows captured values

("functional" closures)

FnOnce is a supertrait of FnMut is a supertrait of Fn

9 / 21

Outline

Closures

Iterators

Workshop

10 / 21

High Level

Iterators are a common programming pattern for lazily walking through
structured data:

let v1 = vec![1, 2, 3];
let v1_iter = v1.iter();
for val in v1_iter {

println!("Got: {val}");
}

Anytime you use a for-loop, you’re working with an iterator (More on
that in a moment)

11 / 21

The Iterator Trait

Iterators implement a particular trait:

pub trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

// methods with default implementations elided
}

This trait has a single required method, with a ton of derived methods

12 / 21

Associated Types

The iterator trait has an associated type Item:

pub trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

// methods with default implementations elided
}

There is a subtle different between associated types and generic traits:
since it’s only possible to define a trait once for a type, there can only be
one iterator for a given type (with a fixed Item)

13 / 21

Laziness

Laziness here means that any computation associated with the next
element is delayed until the next is called:

// Does not print anything
let v = vec![1, 2, 3, 4, 5];
v.iter().map(|x| println!("{x}"));

14 / 21

Defining Iterators

There is a common pattern for defining iterators in Rust:

1. Define a separate struct to house the iterator (e.g.,
std::VecDeque::Iter)

2. Derive the Iterator trait for this struct
3. Implement an iter() method to construct an iterator from a value

of the given type

15 / 21

Creating iterators

There are three common methods which can create iterators from a
collection:

§ iter() for immutable references to elements
§ iter_mut(), for mutable references to elements
§ into_iter(), which is consuming, for iterating over the elements

themselves

16 / 21

The IntoIterator Trait

It’s also possible to automatically convert types into iterators:

pub trait IntoIterator {
type Item;
type IntoIter: Iterator<Item = Self::Item>;

// Required method
fn into_iter(self) -> Self::IntoIter;

}

We can add a last step to the previous slide:

1. Define a separate struct to house the iterator (e.g.,
std::VecDeque::Iter)

2. Derive the Iterator trait for this struct
3. Implement an iter() method to construct an iterator from a value

of the given type
4. Derive the IntoIterator trait for your given type

17 / 21

Iterators and For Loops

For-loops implicitely call one of the three functions for creating iterators.

let values = vec![1, 2, 3, 4, 5];

for x in values { // same as `values.into_iter()`
println!("{x}");

}

let mut values = vec![41];

for x in &mut values { // same as `values.iter_mut()`
*x += 1;

}

for x in &values { // same as `values.iter()`
assert_eq!(*x, 42);

}

18 / 21

Adapters

We can use closures and higher order functions to build more complex
iterators:

(0..5).flat_map(|x| x * 100 .. x * 110)
.enumerate()
.filter(|&(i, x)| (i + x) % 3 == 0)
.for_each(|(i, x)| println!("{i}:{x}"));

This allows for mor functionally-styled code

19 / 21

Outline

Closures

Iterators

Workshop

20 / 21

Workshop

§ Finish Assignment 3 (maybe try to implement colon definitions)
§ Define a Gap Buffer structure and implement the IntoIterator

trait for it (this will be a question on Assignment 4)

A Gap Buffer is a buffer-like data structure that allows for fast local
updates at a particular postion. They’re useful for things like text editors,
in which the particular position is the cursor.

The easiest way to build a gap buffer is to store two vectors, where
"moving the cursor" means popping from one vector and pushing to
another (note that this means one vector may be stored backwards)

21 / 21

	Closures
	Iterators
	Workshop

