
Rc<T> and RefCell<T>
CAS CS 392: Rust, in Theory and in Practice

February 27, 2025 (Lecture 11)

Outline

Reference Counting

Interior Mutability

A Couple Last Things

Workshop

High Level

Ownership is nice, borrowing can make it ownership nice to work with,
but we still may want data to have multiple owners:

// THIS DOES NOT COMPILE
use crate::List::{Cons, Nil};
enum List {Cons(i32, Box<List>), Nil}
fn main() {

let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
let b = Cons(3, Box::new(a));
let c = Cons(4, Box::new(a));

}

Recall: Reference Counting

Languages like Swift allow for this using reference counting:

class Stuff {
init() {print("allocating")}
deinit {print("deallocating")}

}

var r1 : Stuff? = Stuff()
var r2 : Stuff? = r1
var r3 : Stuff? = r2

r1 = nil // prints:
r2 = nil // allocating
r3 = nil // deallocating

§ The number of references is maintained
§ Once the count goes to zero, the associated memory can be freed

Recall: Lists

// THIS DOES NOT COMPILE
use crate::List::{Cons, Nil};
enum List {Cons(i32, Box<List>), Nil}
fn main() {

let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
let b = Cons(3, Box::new(a));
let c = Cons(4, Box::new(a));

}

(Last time) We can build recursive list data types using boxes

Boxes still don’t allow for complex reference structures, like two lists with
the same tail because a box must still have a single owner

Mini-Puzzle

// THIS DOES NOT COMPILE
use crate::List::{Cons, Nil};
enum List {Cons(i32, Box<List>), Nil}
fn main() {

let mut a = Cons(5,
Box::new(Cons(10,

Box::new(Nil))));
a = Cons(3, Box::new(a));
let x = if let Cons(n, _) = a { n } else { 0 }
println!("{}", x)

}

Is this okay?

The Reference Counting Type

use crate::List::{Cons, Nil};
use std::rc::Rc;
enum List {Cons(i32, Rc<List>), Nil}
fn main() {

let a = Rc::new(Cons(5,
Rc::new(Cons(10,

Rc::new(Nil)))));
let b = Cons(3, Rc::clone(&a));
let c = Cons(4, Rc::clone(&a));

}

We can get these kinds of structures with the reference counted smart
pointers

Rc<T> is like a box, except that it’s possible to clone the reference
without cloning the data itself

Rc::clone(&a) just increments the reference count

Aside: Deref and Reference Counting

Rc<T> implements the Deref trait:

let x : Rc<i32> = Rc::new(5);
let x_ref : &Rc<i32> = &x;
let x_ref2 : &i32 = &x;
let _ : Rc<i32> = Rc::clone(x_ref);
// let _ : Rc<i32> = Rc::clone(x_ref2);

Rc::clone has the following signature:

fn clone(&self) -> Rc<T, A>

The point: How a reference is coerced can be determined by the type
annotation (or by type inference)

Rc::clone vs. .clone()

We can also just use .clone():

let x : Rc<i32> = Rc::new(5);
let _ = x.clone();

The Rust convention is to use Rc::clone to distinguish shallow clones
from deep clones

(another verbose Rust convention)

References Counts

Clones increment the reference count:

impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> {
fn clone(&self) -> Self {

unsafe {
self.inner().inc_strong();
Self::from_inner_in(self.ptr,

self.alloc.clone())
}

}
}

We can use Rc::strong_count to see what the current count is:

fn main() {
let x = Rc::new(5); let y = x.clone();
assert_eq!(2, Rc::strong_count(&x)); drop(y);
assert_eq!(1, Rc::strong_count(&x));

}

Immutability

Reference counted smart pointers are immutable:

// THIS DOES NOT COMPILE
let x : Rc<i32> = Rc::new(5);
*x = 3;

If we have multiple references, we don’t want to be able to mutate them!

Reference Counting and Concurrency

We also have Arc<T> for (multi-)thread safe ("atomic") reference
counting:

let counter = Arc::clone(&counter);
let handle = thread::spawn(move || {

let mut num = counter.lock().unwrap();
*num += 1;

});

Rc<T> should only be used the in single-threaded settings (generally
better performance)

(We may or may not talk about concurrency next week)

Outline

Reference Counting

Interior Mutability

A Couple Last Things

Workshop

RefCell<T>

fn main() {
let x = RefCell::new(5);
let mut y : RefMut<'_, i32> = x.borrow_mut();
*y += 1; drop(y);
println!("{}", x.borrow())

}

RefCell<T> owns the data it holds like a Box<T>

We get a compile time error if we create multiple mutable references to a
Box<T>

We get a runtime error if we create multiple mutable references to a
RefCell<T>

The Takeaway: We can mutate a value in a RefCell<T> even when it
is immutable

Trade-offs

Compile-time errors give us better assurance that our code is correct

There are memory-safe operations that are not allowed by the borrow
checker

The Rust compiler is conservative. Annoyance is better than
catastrophe

Comparisons

smart pointer # owners mut ref allowed? mut ref checked?
Box<T> one yes compile-time
Rc<T> many no N/A
RefCell<T> one yes run-time

Example: Mock Objects

There’s a nice example in the text on this:

struct MockMessenger {sent_messages: RefCell<Vec<String>>,}
impl MockMessenger {

fn new() -> MockMessenger {
MockMessenger {sent_messages: RefCell::new(vec![]),}

}
}
impl Messenger for MockMessenger {

fn send(&self, message: &str) {
self.sent_messages

.borrow_mut().push(String::from(message));
}

}

The rough idea: If we have to work with something by (immutable)
reference (e.g., because of a trait), we can have mutable state in a
RefCell

Reference Counting + Interior Mutability

We can combine reference counting and interior mutability to have
mutable values in things like lists:

enum List {Cons(Rc<RefCell<i32>>, Rc<List>), Nil}
fn main() {

let value = Rc::new(RefCell::new(5));
let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));
let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));
*value.borrow_mut() += 10;

}

Outline

Reference Counting

Interior Mutability

A Couple Last Things

Workshop

Reference Cyles

Combining RefCell<T> and Rc<T> can create reference cycles:

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));
if let Some(link) = a.tail() {

*link.borrow_mut() = Rc::clone(&b);
}

Reference cycles can lead to leaked memory (it is impossible to bring the
reference count down to 0)

This means /memory leaks are "safe" in Rust

An Implementation of Rc<T>

pub struct Rc<
T: ?Sized,
A: Allocator = Global,

> {
ptr: NonNull<RcInner<T>>,
phantom: PhantomData<RcInner<T>>,
alloc: A,

}
// ...
fn clone(&self) -> Self {

unsafe {
self.inner().inc_strong();
Self::from_inner_in(self.ptr, self.alloc.clone())

}
}

What the heck is the NonNull? And what is PhantomData? And is it
okay to use this unsafe code?

Outline

Reference Counting

Interior Mutability

A Couple Last Things

Workshop

Task

Implement hd, tl and get for the following representation of a
linked-list:

enum List<T> {
Cons(T, Rc<RefCell<List<T>>>),
Nil

}

	Reference Counting
	Interior Mutability
	A Couple Last Things
	Workshop

