
Primer on Proof/Type Theory
CAS CS 392: Rust, in Theory and in Practice

March 18, 2025 (Lecture 13)

Outline

Propositional Logic

Proof Theory

Type Theory

Workshop

What is logic?

A logic is a formalization of (a kind of) language. To define a logic we
need:

§ syntax: what can I write down in my logic?
§ semantics: what do those things mean?
§ proof system: (optional) how can I derive new things from old

things?

(This is also what you need for a PL, replacing proof system with type system)

Propositions

Some facts seems contingent on the world:

§ It is raining
§ It is cold
§ The house is on fire

Other facts seems unassailable:

§ If it is raining and it is cold then it is raining
§ Either the house is on fire or the house is not on fire

We’re interested in why this is the case

Propositions

Some facts seems contingent on the world:

§ It is raining
§ It is cold
§ The house is on fire

Other facts seems unassailable:

§ If it is raining and it is cold then it is raining
§ Either the house is on fire or the house is not on fire

We’re interested in why this is the case

Propositions

Some facts seems contingent on the world:

§ It is raining
§ It is cold
§ The house is on fire

Other facts seems unassailable:

§ If it is raining and it is cold then it is raining
§ Either the house is on fire or the house is not on fire

We’re interested in why this is the case

Boolean Connectives

P ^ Q

Proposition logic (a.k.a. sentential logic) is the logic of Boolean
connectives. It’s motivated by questions like:

§ Given a collection of true statements, when is a compound
statement made of them them also true?

§ How to connectives affect our ability to derive new facts from old
ones?

§ What connectives are required, which are definable in terms of
others?

Conditions in PLs

We can think of propositional logic as the logic of conditions in PLs:

let p1: bool = true;
let p2: bool = true;
let p3: bool = false;
assert!(p1 && !p2 || !p3);

Propositional logic can help us reason about:

§ when conditions will hold (evalutation)
§ if it’s possible for a condition to hold (satisfiability)
§ what connectives are necessary (functional completeness)

Proposition Variables

P ^ Q,P _ Q,P Ñ Q

Propositional variables are "stand-ins" for "atomic" statements. We
can think of them like variables from algebra or calculus

We’re interested in how propositions interact with respect to connectives.
We don’t care what the actual propositions are

Proposition Variables

P ^ Q,P _ Q,P Ñ Q

Propositional variables are "stand-ins" for "atomic" statements. We
can think of them like variables from algebra or calculus

We’re interested in how propositions interact with respect to connectives.
We don’t care what the actual propositions are

Propositional Formulas

Fix a set of propositional variables V. The set of propositional formulas
PV is defined inductively:

§ All propositional variables from V are propositional formulas
§ K is a propositional formula
§ If � and are propositional formulas then so are p�_ q and

p�^ q and p� Ñ q

We pronounce ^ as "and", _ as "or", Ñ as "implies", and K as "false".

Annoying Technicalities

§ We assume an infinite set of "natural" propositional variables, e.g,
P , Q, R , X , Y , Z . . .

§ We elide parentheses by according to the table below (operators are
given in order of increasing precedence)

operator associativity
Ñ right
_ left
^ left

Induction/Recursion on Formulas

Propositional formulas are defined inductively

If we want to write a function on all formulas, we have to define it using
structural recursion on formulas

And if we want to prove something about all formulas, we have to use
structural induction

Exercise. Implement a function which determines the number of
connectives in a formula

Exericse. Prove by induction that all formulas have the same number of
left parentheses as right parentheses

Induction/Recursion on Formulas

Propositional formulas are defined inductively

If we want to write a function on all formulas, we have to define it using
structural recursion on formulas

And if we want to prove something about all formulas, we have to use
structural induction

Exercise. Implement a function which determines the number of
connectives in a formula

Exericse. Prove by induction that all formulas have the same number of
left parentheses as right parentheses

Induction/Recursion on Formulas

Propositional formulas are defined inductively

If we want to write a function on all formulas, we have to define it using
structural recursion on formulas

And if we want to prove something about all formulas, we have to use
structural induction

Exercise. Implement a function which determines the number of
connectives in a formula

Exericse. Prove by induction that all formulas have the same number of
left parentheses as right parentheses

Induction/Recursion on Formulas

Propositional formulas are defined inductively

If we want to write a function on all formulas, we have to define it using
structural recursion on formulas

And if we want to prove something about all formulas, we have to use
structural induction

Exercise. Implement a function which determines the number of
connectives in a formula

Exericse. Prove by induction that all formulas have the same number of
left parentheses as right parentheses

Model Theory of Classical Propositional Logic

A valuation of the propositional variables V is a function ⌧ : V Ñ t0, 1u

We read 0 as "false" and 1 as "true"

A truth assignment can be lifted to a evaluation function of the form
⌧ : PV Ñ t0, 1u inductively:

§ ⌧pPq “ ⌧pPq when P P V
§ ⌧pKq “ 0
§ ⌧p�^ q “ ⌧p�q⌧p q
§ ⌧p�_ q “ maxp⌧p�q, ⌧p qq
§ ⌧p� Ñ q “ maxp1 ´ ⌧p�q, ⌧p qq

What about negation?

Negation is definable as � ” � Ñ K

Entailment

A set of formulas � entails a formula �, written � (� if ⌧p�q “ 1
implies ⌧p�q “ 1 for any valuation ⌧

Example: P ,Q $ p P _ Qq

Outline

Propositional Logic

Proof Theory

Type Theory

Workshop

What is Proof Theory?

Proof Theory is a subfield of mathematical logic which takes proof as an
object of formal study

There are many ways to formalize the notion of proof, we’ll use sequent
calculi

Proof Systems and Inference Rules

A proof system S is given in terms of a class of judgments J , and
consists of inference rules of the form:

J1 J2 . . . Jk
Jk`1

where k • 0 and J1, . . . , Jk`1 are judgments from J . We read an
inference rule as "if the judgments J1, . . . , Jk hold, then Jk`1 follows"

Judgments above the vertical line are called premises and judgment
below is called the conclusion. We call in inference rule without any
premises an axiom

Derivations

A derivation D in a proof system P over the judgments J is a tree with
the following properties:

§ the nodes of D are judgments from J
§ A node J has the children J1, . . . , Jk only if pJ1, . . . , Jkq{Jk`1 is an

inference rule of P.

Trees are also inductively defined so we can do induction on derivations

(Contrived) Example: Binary Strings

0 1
S1 S2

S1 ˝ S2

Consider the above simple proof system with binary strings as judgments,
and where ‘˝’ is string concatenation

Sequents

Fix a language L of which consists of statements. A sequent is a
judgment of the form

�1, . . . ,�k $ 1 . . . , l

where k • 0 and l • 0 and �1, . . . ,�k , 1, . . . , l are statements in L.
We read a sequent as saying that "if �1, . . . ,�k are hold, then one of
 1, . . . , k hold"

We call the formulas to the left of the ‘$’ the context

For technical reasons, we will always assume l “ 1

Sequents

Fix a language L of which consists of statements. A sequent is a
judgment of the form

�1, . . . ,�k $ 1 . . . , l

where k • 0 and l • 0 and �1, . . . ,�k , 1, . . . , l are statements in L.
We read a sequent as saying that "if �1, . . . ,�k are hold, then one of
 1, . . . , k hold"

We call the formulas to the left of the ‘$’ the context

For technical reasons, we will always assume l “ 1

Sequents

Fix a language L of which consists of statements. A sequent is a
judgment of the form

�1, . . . ,�k $ 1 . . . , l

where k • 0 and l • 0 and �1, . . . ,�k , 1, . . . , l are statements in L.
We read a sequent as saying that "if �1, . . . ,�k are hold, then one of
 1, . . . , k hold"

We call the formulas to the left of the ‘$’ the context

For technical reasons, we will always assume l “ 1

(Intuitionistic) Propositional Logic

Assumptions and Falsity:

�,�, � $ �

� $ K
� $ �

Conjunction:

� $ � � $

� $ �^

� $ �^

� $ �

� $ �^

� $

Disjunction:

� $ �

� $ �_

� $

� $ �_

� $ �_ �,� $ ⇠ �, $ ⇠

� $ ⇠

Implication:
�,� $

� $ � Ñ

� $ � Ñ � $ �

� $

(Intuitionistic) Propositional Logic

Assumptions and Falsity:

�,�, � $ �

� $ K
� $ �

Conjunction:

� $ � � $

� $ �^

� $ �^

� $ �

� $ �^

� $

Disjunction:

� $ �

� $ �_

� $

� $ �_

� $ �_ �,� $ ⇠ �, $ ⇠

� $ ⇠

Implication:
�,� $

� $ � Ñ

� $ � Ñ � $ �

� $

(Intuitionistic) Propositional Logic

Assumptions and Falsity:

�,�, � $ �

� $ K
� $ �

Conjunction:

� $ � � $

� $ �^

� $ �^

� $ �

� $ �^

� $

Disjunction:

� $ �

� $ �_

� $

� $ �_

� $ �_ �,� $ ⇠ �, $ ⇠

� $ ⇠

Implication:
�,� $

� $ � Ñ

� $ � Ñ � $ �

� $

(Intuitionistic) Propositional Logic

Assumptions and Falsity:

�,�, � $ �

� $ K
� $ �

Conjunction:

� $ � � $

� $ �^

� $ �^

� $ �

� $ �^

� $

Disjunction:

� $ �

� $ �_

� $

� $ �_

� $ �_ �,� $ ⇠ �, $ ⇠

� $ ⇠

Implication:
�,� $

� $ � Ñ

� $ � Ñ � $ �

� $

Example Derivation

P $ pP Ñ Kq Ñ K

Soundness and Completeness

Theorem. � $ � if and only if � (�

Soundness (the "only if" part) says that everything (conditionally)
provable is (conditionally) true

Completeness (the "if" part) says that everything (conditionally) true is
(conditionally) provable

Completeness does not actually hold unless we include one more axiom:

�_ p� Ñ Kq

Soundness and Completeness

Theorem. � $ � if and only if � (�

Soundness (the "only if" part) says that everything (conditionally)
provable is (conditionally) true

Completeness (the "if" part) says that everything (conditionally) true is
(conditionally) provable

Completeness does not actually hold unless we include one more axiom:

�_ p� Ñ Kq

Soundness and Completeness

Theorem. � $ � if and only if � (�

Soundness (the "only if" part) says that everything (conditionally)
provable is (conditionally) true

Completeness (the "if" part) says that everything (conditionally) true is
(conditionally) provable

Completeness does not actually hold unless we include one more axiom:

�_ p� Ñ Kq

Soundness and Completeness

Theorem. � $ � if and only if � (�

Soundness (the "only if" part) says that everything (conditionally)
provable is (conditionally) true

Completeness (the "if" part) says that everything (conditionally) true is
(conditionally) provable

Completeness does not actually hold unless we include one more axiom:

�_ p� Ñ Kq

Anything else?

There is quite a bit that we’re not going to cover. All this is to give you
a taste and to motivate our discussion on Thursday.

If you want more, there is a logic course in the math department (CAS
MA 531) and in the philosophy department (CAS PH 360) and
(eventually) in the CS department.

(If you’re really interested, talk to me. I have many undergraduate
project in logic I’d like to work on)

Outline

Propositional Logic

Proof Theory

Type Theory

Workshop

What is a Type?

let f : int -> int = fun x -> x + 1
let g : int -> bool = fun x -> x > 0
let compose : int -> bool = fun x -> g (f (x))
(* g (f (x)) will give use a compile-time error *)

A type is a syntactic construct which annotates and describes the
behavior and compositionality of a program

The "syntactic" part is important, we write the annotation

This allows type-checking to happen at compile time (we don’t need
semantic information)

What is a Type?

let f : int -> int = fun x -> x + 1
let g : int -> bool = fun x -> x > 0
let compose : int -> bool = fun x -> g (f (x))
(* g (f (x)) will give use a compile-time error *)

A type is a syntactic construct which annotates and describes the
behavior and compositionality of a program

The "syntactic" part is important, we write the annotation

This allows type-checking to happen at compile time (we don’t need
semantic information)

What is a Type?

let f : int -> int = fun x -> x + 1
let g : int -> bool = fun x -> x > 0
let compose : int -> bool = fun x -> g (f (x))
(* g (f (x)) will give use a compile-time error *)

A type is a syntactic construct which annotates and describes the
behavior and compositionality of a program

The "syntactic" part is important, we write the annotation

This allows type-checking to happen at compile time (we don’t need
semantic information)

Simply Typed Lambda Calculus

f : A Ñ B , g : B Ñ C $ �x .gpfxq : A Ñ C

The simply typed lambda calculus (STLC) is a type theory built on
top of the untyped lambda calculus

It was created by Alonzo Church in the 1930s (after his logical system
based on the lambda calculus was shown to be inconsistent)

Recall: The Untyped Lambda Calculus

Fix a set of variables V. The collection of lambda terms ⇤ is defined
inductively:

§ V Ä ⇤ (variables are lambda terms)
§ M,N P ⇤ is pMNq P ⇤ (applications are lambda terms)
§ x P V and M P ⇤ implies �x .M P ⇤ (abstractions are lambda terms)

The small-step semantics of the �-calculus are given by:

M ›Ñ N

�x .M ›Ñ �x .N

M ›Ñ M 1

MN ›Ñ M 1N
N ›Ñ N 1

MN ›Ñ MN 1

�-reduction:

p�x .MqN ›Ñ MrN{xs

The term M is a normal form if there is no N such that M ›Ñ N

Recall: The Untyped Lambda Calculus

Fix a set of variables V. The collection of lambda terms ⇤ is defined
inductively:

§ V Ä ⇤ (variables are lambda terms)
§ M,N P ⇤ is pMNq P ⇤ (applications are lambda terms)
§ x P V and M P ⇤ implies �x .M P ⇤ (abstractions are lambda terms)

The small-step semantics of the �-calculus are given by:

M ›Ñ N

�x .M ›Ñ �x .N

M ›Ñ M 1

MN ›Ñ M 1N
N ›Ñ N 1

MN ›Ñ MN 1

�-reduction:

p�x .MqN ›Ñ MrN{xs

The term M is a normal form if there is no N such that M ›Ñ N

Recall: The Untyped Lambda Calculus

Fix a set of variables V. The collection of lambda terms ⇤ is defined
inductively:

§ V Ä ⇤ (variables are lambda terms)
§ M,N P ⇤ is pMNq P ⇤ (applications are lambda terms)
§ x P V and M P ⇤ implies �x .M P ⇤ (abstractions are lambda terms)

The small-step semantics of the �-calculus are given by:

M ›Ñ N

�x .M ›Ñ �x .N

M ›Ñ M 1

MN ›Ñ M 1N
N ›Ñ N 1

MN ›Ñ MN 1

�-reduction:

p�x .MqN ›Ñ MrN{xs

The term M is a normal form if there is no N such that M ›Ñ N

Simple Types

Fix a set of base types B. The set of simple types TB is defined
inductively:

§ B Ä T (base types are simple types)
§ K P T (the empty type is a simple type)
§ A,B P T implies pA Ñ Bq P T (function types are simple types)

This should look very familiar, it’s similar to PV but without conjunction
and disjunction (more on that later)

Simple Types

Fix a set of base types B. The set of simple types TB is defined
inductively:

§ B Ä T (base types are simple types)
§ K P T (the empty type is a simple type)
§ A,B P T implies pA Ñ Bq P T (function types are simple types)

This should look very familiar, it’s similar to PV but without conjunction
and disjunction (more on that later)

Typing Judgments

x1 : A1, . . . , xk : Ak $ M : A

A typing statement (M : A) is a �-term together with a simple type,
and reads "M is of type A"

A variable declaration (x : B) the a typing statement in which the
lambda term is a variable is a variable

A typing judgment is a type sequent whose judgments are typing
statements and whose context is made up of variable declarations

Typing Judgments

x1 : A1, . . . , xk : Ak $ M : A

A typing statement (M : A) is a �-term together with a simple type,
and reads "M is of type A"

A variable declaration (x : B) the a typing statement in which the
lambda term is a variable is a variable

A typing judgment is a type sequent whose judgments are typing
statements and whose context is made up of variable declarations

Typing Judgments

x1 : A1, . . . , xk : Ak $ M : A

A typing statement (M : A) is a �-term together with a simple type,
and reads "M is of type A"

A variable declaration (x : B) the a typing statement in which the
lambda term is a variable is a variable

A typing judgment is a type sequent whose judgments are typing
statements and whose context is made up of variable declarations

Simply-Types Lambda Calculus

Assumptions and Falsity:

�, x : A, � $ x : A

� $ M : K
� $ explodepMq : A

Implication:

�, x : A $ M : B

� $ �x .M : A Ñ B

� $ M : A Ñ B � $ N : A

� $ MN : B

Simply-Types Lambda Calculus

Assumptions and Falsity:

�, x : A, � $ x : A

� $ M : K
� $ explodepMq : A

Implication:

�, x : A $ M : B

� $ �x .M : A Ñ B

� $ M : A Ñ B � $ N : A

� $ MN : B

Example Derivation

x : B $ �f .fx : pB Ñ Kq Ñ K

Meta-Theoretic Properties

Progress: If � $ M : A and M is not a normal form, then there is as a
term N such that M ›Ñ N

Preservation: If � $ M : A and M ›Ñ N, then � $ N : A

Normalization: If � $ M : A, then M has a normal form

Strong normalization: If � $ M : A then M does not appear in any
infinite reductions

We will focus on the first two in the back-half of the course

Curry-Howard Isomorphism (First Glance)

Implication (STLC):

�, x : A $ M : B

� $ �x .M : A Ñ B

� $ M : A Ñ B � $ N : A

� $ MN : B

Implication (Propositional Logic):

�,� $

� $ � Ñ

� $ � Ñ � $ �

� $

Type Theory is Logic + Computation

Outline

Propositional Logic

Proof Theory

Type Theory

Workshop

Tasks

§ Write an enum for propositional formulas and implement a function
an evaluation function on expressions

§ Finish assignment 5

