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Intuitionistic Propositional Logic

Syntax:

V ::“ p | q | r . . .
T ::“ V | K | T Ñ T | T ^ T | T _ T
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Untyped Lambda Calculus

Syntax:

V ::“ x | y | z . . .
T ::“ V | �V .T | TT

Small-Step Semantics:

M ›Ñ M 1

�x .M ›Ñ �x .M 1
M ›Ñ M 1

MN ›Ñ M 1N
N ›Ñ N 1

MN ›Ñ MN 1

p�x .MqN ›Ñ MrN{xs



Simply Typed Lambda Calculus (STLC)

Syntax:

VTy ::“ a | b | c . . .
Ty ::“ VTy | K | Ty Ñ Ty

VT ::“ x | y | z . . .
T ::“ VT | �V .T | TT

Type System:

�, x : A,� $ x : A

� $ M : A Ñ B � $ N : A

� $ MN : B

�, x : A $ M : B

� $ �x .M : A Ñ B



Curry-Howard Isomorphism

STLC Type System:

�, x : A,� $ x : A

� $ M : A Ñ B � $ N : A

� $ MN : B

�, x : A $ M : B

� $ �x .M : A Ñ B

IPL Proof System:

�,�,� $ �
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� $ � Ñ  



STLC+ (Syntax)

VTy ::“ a | b | c . . .
Ty ::“ VTy | K | J | Ty Ñ Ty | T ^ T | T _ T

VT ::“ x | y | z . . .
T ::“ VT | �V .T | TT | xT ,T y | ⇡1pT q | ⇡2pT q

| ◆1pT q | ◆2pT q | case T of ◆1pV q Ñ T ; ◆2pV q Ñ T

| explode(M) | ‚



STLC+ (Product Types)



STLC+ (Product Types)



STLC+ (Union Types)



STLC+ (Unit type and Empty Type)



Example

f : A Ñ B , g : A Ñ C , x : A $ xfx , gxy : B ^ C



Aside: Proof Reduction

Proofs can have unnecessary parts, e.g., building a pair only to
immediately destruct it

This is also related to the notion of cut-elimination, an important topic in
the area of proof theory

Proof reduction corresponds to evaluation in the CH isomorphism



Theme of the Day

A type system "draws a circle" around a class of programs with nice
properties, which often manifest in the semantics

Type systems open possibilities to better semantics

Rust, for example, can avoid using a garbage collector, not because you
can write drastically different programs than in C, but because it restricts
the kinds of C-like programs you can write
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Assumptions

�, x : A,� $ x : A

The assumption rule is actually doing quite a bit of heavy lifting. In our
system, we cannot add variables to our context mid-proof

This is not a huge problem, we can change our contexts in the
meta-theory
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Admissible Rules

A rule is admissible or derivable if adding the rule to the system does
not change what judgments can be derived

Lemma. If � $ M : B and x R �, then �, x : A $ M : B .



Structural Rules

Structural rules allow us to change the state of our context mid-proof

All structural rules are admissible in STLC (and IPL)



Alternative System

We can rewrite the type system to include structural rules instead of the
assumptions rule



Substructural Logics

Once we write are system to have structural rules, we have a degree of
freedom to define new systems

Substructural logics/type systems disallow certain structural rules

System Weakening Contraction Variable use
Unrestricted yes yes any number of times
Affine yes no at most once
Relevant no yes at least once
Linear no no exactly once
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Linearity in Rust

We cannot use a variable more than once (without references):

// This does not compile
fn dup<T>(t: T) -> (T, T) {

(t, t)
}

Rust without references is linear
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Linearity in Rust

We can’t implement the example from before:

// This does not compile
fn example<T, U, V, F, G>(f: F, g: G, x: T) -> (U, V)
where

F : Fn(T) -> U,
G : Fn(T) -> V,

{
(f(x), g(x))

}

Question. How can we fix this?



Linear Logic

"Truth is free. Having proved a theorem, you may use this proof as
many times as you wish, at no extra cost. Food, on the other hand,
has a cost. Having baked a cake, you may eat it only once. If traditional
logic is about truth, then linear logic is about food." (Walder)

Jean-Yves Girard introduced linear logic in the 80s as a
resource-sensitive logic which made explicit certain dualities between
classical and intuitionsitic logic

It is now most commonly used in PL and Quantum



Linear Typed �-Calculus (LTLC)

Syntax:

VTy ::“ a | b | c . . .
Ty ::“ VTy | K | Ty ( Ty

VT ::“ x | y | z . . .
T ::“ VT | �V .T | TT

Type system:

x : A $ x : A

� $ M : A

⇡p�q $ M : A

� $ M : A ( B � $ N : A

�,� $ MN : B

�, x : A $ M : B

� $ �x .M : A ( B



Example

$ �f .�x .fx : pA ( Bq ( A ( B



Non-Example

$ �x .�y .x : A ( B ( A



The Key Lemma

Lemma. If � $ M : A then

§ x is free in M if and only if x appears in �

§ each free variables appears exactly once in M

This is what allows us to develop semantics which allow for a unique
pointer to the heap (more on that next week)



LTLC+

It is natural to want more data types in LTLC

Furthermore, we might also want to combine linearity and nonlinerity (as
is done in Rust)

In the reading, Wadler introduces Girard’s Logic of Unity as a way of
combining these ideas



LTLC+ (Intuitionistic Assumptions)



LTLC+ (Unlimited Resources)



LTLC+ (Sum Types)



LTLC+ (Product Types)



Linearity in Rust

If Rust was really linear this would not be possible:

fn proj<S, T>(p: (S, T)) -> S {
p.0

}

This code is morally equivalent to:

fn proj<S, T>(p: (S, T)) -> S {
let out = p.0;
drop(p.1);
out

}

drop is also non-linear. Is drop as implicit? Is drop a language
construct? (more on that in this week’s assignment)
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Closing Remarks: Array Updates



Closing Remarks: Revisiting Intuitionistic Assumptions


