
Interpreter for LTLC
CAS CS 392: Rust, in Theory and in Practice

March 25, 2025 (Lecture 14)

Outline

Recap

Workshop

Structural Rules

Γ $ M : A

Γ, x : B $ M : A
x R Γ (Weakening)

Γ, x : B, y : B $ M : A

Γ, x : B $ Mrx{y s : A
(Contraction)

Γ, x : B, y : C ,∆ $ M : A

Γ, y : C , y : B,∆ $ M : A
(Exchange)

Substructural Type Systems

Once we write are system to have structural rules, we have a degree of
freedom to define new systems

Substructural logics/type systems disallow certain structural rules

System Weakening Contraction Variable use
Unrestricted yes yes any number of times
Affine yes no at most once
Relevant no yes at least once
Linear no no exactly once

Linearity in Rust

We cannot use a variable more than once (without references):

// This does not compile
fn dup<T>(t: T) -> (T, T) {

(t, t)
}

Rust without references is linear

Linear Typed λ-Calculus (LTLC)

Syntax:

VTy ::“ a | b | c . . .

Ty ::“ VTy | K | Ty ⊸ Ty

VT ::“ x | y | z . . .

T ::“ VT | λV .T | TT

Type system:

x : A $ x : A

Γ $ M : A

πpΓq $ M : A

Γ $ M : A ⊸ B ∆ $ N : A

Γ,∆ $ MN : B

Γ, x : A $ M : B

Γ $ λx .M : A ⊸ B

The Key Lemma

Lemma. If Γ $ M : A then the variable x appears free in M exactly once
if and only if x appears in Γ

This means no cloning in a substitution-based model

Outline

Recap

Workshop

Goals

§ Make sure we understand the structure of an interpreter
§ Take a look at some lexer/recursive descent parser code
§ Implement type checking and evaluation for both STLC and LTLC

Review: Interpretation Pipeline

Interpretation is done in 4 stages:

1. Lexical Analysis: Group characters in the input char stream into
units called tokens, eliminating whitespace and comments

2. Syntactic Analysis: Convert our stream of tokens into an abstract
syntax tree (AST), giving the program its heirarchical structure

3. Static Analysis: Make sure the AST is well-formed, doing any
scope/type/borrow-checking, potentially building an intermediate
representation

4. Evaluation: Determine the value associated with the AST based on
the given semantics

Review: Lexing

#[derive(Debug, Clone)]
pub enum Token {

Lparen,
Rparen,
Lambda,
FunTy,
EmptyTy,
Var(String),

}

A lexer is, in essence, a peekable iterator where next() gives you the
next token represented in the character stream

More complex lexers need to deal with backtracking, we’re not going to
worry about that

Review: Recursive Descent Parsing

Recursive decent parsing is an ad hoc parsing method which
"mini-parsers" which mirror the our AST

pub enum Expr {
Var(Ident),
App(Box<Expr>, Box<Expr>),
Lam(Ident, Type, Box<Expr>),

}
fn parse_expr(&mut self) -> Option<Expr> {

match self.lexer.next()? {
Token::Var(s) => {

Some(Expr::Var(s))
}
Token::Lparen => {

match self.lexer.peek_keyword() {
Some(Token::Lambda) => {

// ...

Tasks

§ Form a group of 2-3
§ Download the starter code from the course webpage
§ Implement the method Expr::ty in the file type.rs
§ Implement the method Expr::eval in the file eval.rs
§ Look through lexer.rs and parser.rs for "inspiration" for the

final project

	Recap
	Workshop

