
Featherweight Rust: An Introduction
CAS CS 392: Rust, in Theory and in Practice

March 27, 2025 (Lecture 14)

Outline

Last Call: Linear Types

FR: High Level

FR: Syntax

Workshop

The Key Lemma

Lemma. If Γ $ M : A (i.e., M is linearly well-typed), then every variable
in Γ appears in M exactly once and every bound variable appears exactly
once in the body of any λ-term.

Let’s prove this

BAX: A & T
, XA , y : B, + M

: C

↑, y : B , x: A, M : C

Lemma If NrM : A③ N
,
X : A + M: B Tis

then XEN => x appears
M r XX1 .

M : A -- B
inMy

once

(ii) M = (... (xX . N) ...) =7

InF* appears exactly once
-

-

in N

Eroof. By ind on devic
. D of NtM : A

D

Rule D ↑ + M : A

Base Case :
- D

X : A + x : A

MMA

(i) and (ii) hold triviallyp'D
:
: N

,
X : B

, Y : C ,
4 + M : A

y : C , X
: B
,
* + M

: A

By IH on D' (i) and (ii) hold of the premise

Since contexts are the same (i) holds

since subject (M) is same (ii) holds

D D
Rul : :

N
,
X : A + M : B

T + Xxt . M : A -B ↳

CBy IH on D'
,
(x+ => y appears exactly once inM

and (x appear exactly once in M
,

and also (ii)

hold of M
. By (d) (ii) holds of XX* . M . By

(4)
,

(i) of of DXAM
.

Rule D .

D
:

Dr
: &

+ M :A-B + N : A

T
,
6 + MN : B

By IH on D
.,
De (ii) holds of mad

N so it holds of MN
,

and alsoof then

X appears fre in
m exactly once

. Yet implies

y appeas exactly
once in N so it x.D

Then x appea exactly once in MN .

Exercise : Six wording to use bi- implicate

Outline

Last Call: Linear Types

FR: High Level

FR: Syntax

Workshop

The Paper

A Lightweight Formalism for Reference Lifetimes and Borrowing in Rust,
David J. Pearce (2021)

"Our calculus core captures many aspects of Rust, including copy- and
move-semantics, mutable borrowing, reborrowing, partial moves, and
lifetimes. In particular, it remains sufficiently lightweight to be easily
digested and understood and, we argue, still captures the salient aspects
of reference lifetimes and borrowing." (from the abstract)

Disclaimer: This is, in no way, my work. It’s just a very cool paper that
works well as the basis of a PL-centric course on Rust.

The Paper

A Lightweight Formalism for Reference Lifetimes and Borrowing in Rust,
David J. Pearce (2021)

"Our calculus core captures many aspects of Rust, including copy- and
move-semantics, mutable borrowing, reborrowing, partial moves, and
lifetimes. In particular, it remains sufficiently lightweight to be easily
digested and understood and, we argue, still captures the salient aspects
of reference lifetimes and borrowing." (from the abstract)

Disclaimer: This is, in no way, my work. It’s just a very cool paper that
works well as the basis of a PL-centric course on Rust.

The Paper

A Lightweight Formalism for Reference Lifetimes and Borrowing in Rust,
David J. Pearce (2021)

"Our calculus core captures many aspects of Rust, including copy- and
move-semantics, mutable borrowing, reborrowing, partial moves, and
lifetimes. In particular, it remains sufficiently lightweight to be easily
digested and understood and, we argue, still captures the salient aspects
of reference lifetimes and borrowing." (from the abstract)

Disclaimer: This is, in no way, my work. It’s just a very cool paper that
works well as the basis of a PL-centric course on Rust.

Timeline

§ 2006: Graydon Hoare introduces of Rust
§ 2015:

§ First stable release of Rust
§ Patina, a formalization of surface-level Rust (earlier version)

§ 2018:
§ RustBelt, a formalization of the Rust MIR
§ KRust, a formalization of the semantics of Rust

§ 2021:
§ FR, a lightweight formalization of surface-level Rust
§ Oxide, a middleweight formalization of surface-level Rust

The Plan

1. Target a subset of Rust, the smallest subset that allows us to test
basic concepts of Rust:

§ (Mutable) Variables
§ Ownership

§ boxes
§ move vs. copy semantics

§ Borrowing
§ mutable vs. immutable borrowing
§ reborrowing
§ freezing
§ moving out

§ Reference Lifetimes
§ scoping blocks
§ borrow lifetimes

2. Write (and implement) a type/borrow system and semantics for this
subset

3. Prove that this subset satisfies the kinds of safety properties we
want (determine what those safety properties are)

Ownership

fn main() {
let mut x = 2;
let mut y = Box::new(x);
let mut z = y;
x = x + 1;
*z = *z - 1;

}

We’ll support boxes so that we can put values on the heap

We’ll also support move vs. copy semantics (so boxes should be have
differently on reassignment than integers)

We will not support implicit dereferences, so working with boxed values
will always require the * operator

Ownership

fn main() {
let mut x = 2;
let mut y = Box::new(x);
let mut z = y;
x = x + 1;
*z = *z - 1;

}

We’ll support boxes so that we can put values on the heap

We’ll also support move vs. copy semantics (so boxes should be have
differently on reassignment than integers)

We will not support implicit dereferences, so working with boxed values
will always require the * operator

Ownership

fn main() {
let mut x = 2;
let mut y = Box::new(x);
let mut z = y;
x = x + 1;
*z = *z - 1;

}

We’ll support boxes so that we can put values on the heap

We’ll also support move vs. copy semantics (so boxes should be have
differently on reassignment than integers)

We will not support implicit dereferences, so working with boxed values
will always require the * operator

Borrowing

We’ll support mutable references to variables, which must be unique:

fn main() {
let mut x = 2;
let mut z = &mut x;
*z += 1;

}

As well as immutable references, which are not necessarily unique:

fn main() {
let mut x = 2;
let mut y = &x;
let mut z = &x;
let mut q = *y;
let mut r = *z;

}

Borrowing

We’ll support mutable references to variables, which must be unique:

fn main() {
let mut x = 2;
let mut z = &mut x;
*z += 1;

}

As well as immutable references, which are not necessarily unique:

fn main() {
let mut x = 2;
let mut y = &x;
let mut z = &x;
let mut q = *y;
let mut r = *z;

}

Scoping Blocks

We’ll support scoping blocks with their own lifetimes:

fn main() {
let mut x = 0;
{x = x + 1; let mut y = x}
x = x + 1;

}

This will allow us to test some of the trickier aspects of borrowing:

// THIS DOES NOT COMPILE
fn main () {

let mut x = Box::new(0);
{

let mut y = x;
// let mut y = &mut x; // IT DOES WITH THIS LINE

}
*x = 1;

}

Scoping Blocks

We’ll support scoping blocks with their own lifetimes:

fn main() {
let mut x = 0;
{x = x + 1; let mut y = x}
x = x + 1;

}

This will allow us to test some of the trickier aspects of borrowing:

// THIS DOES NOT COMPILE
fn main () {

let mut x = Box::new(0);
{

let mut y = x;
// let mut y = &mut x; // IT DOES WITH THIS LINE

}
*x = 1;

}

Reborrowing

// THIS DOES NOT COMPILE
fn main() {

let mut n = 0;
let mut x = &mut n;
{

let mut y = &mut *x;
let mut z = &mut y;
x = &mut **z;

}
*x += 1;
assert_eq!(n, 1);

}

We’ll support reborrowing, the ability the temporarily borrow from a
mutable borrow

Let’s do a demo

Reborrowing

// THIS DOES NOT COMPILE
fn main() {

let mut n = 0;
let mut x = &mut n;
{

let mut y = &mut *x;
let mut z = &mut y;
x = &mut **z;

}
*x += 1;
assert_eq!(n, 1);

}

We’ll support reborrowing, the ability the temporarily borrow from a
mutable borrow

Let’s do a demo

Freezing

// THIS DOES NOT COMPILE
fn main() {

let mut x = 0;
let mut y = &mut x;
x = x + 1;
*y = *y + 1;

}

We’ll support freezing, i.e., ensuring that borrowed values cannot be
mutated

We will not support non-lexical lifetimes (so the above code will still fail
if we remove the last line in main)

Extending Liftimes

fn main() {
let mut x = 1;
let mut z = 2;
let mut y = &mut z;
{

let mut q = &mut x;
y = q;

}
*y = *y + 1;

}

We’ll support the ability to extend the lifetime of a borrow based on it’s
reassignment

We will not support uninitialized variables.

Many More to Come. . .

Our game for the next several weeks will be to come up with as many
examples that we can so that we can capture some of the less "obvious"
behaviors of Rust

Any suggestions?

Outline

Last Call: Linear Types

FR: High Level

FR: Syntax

Workshop

The Source-Level Grammar

<expr> ::= '{' {<stmt> ';'} [<expr>] '}' ; block
| 'Box::new' '(' <expr> ')' ; box
| <lval> ; move/copy
| '&' ['mut'] <lval> ; borrow
| <int> ; integers

<stmt> ::= <expr> ; expression
|'let' 'mut' <var> '=' <expr> ; delcaration
| <lval> '=' <expr> ; assignment

<lval> ::= <var> ; variable
| '*' <lval> ; dereference

Some Remarks

§ Our parser will also need to handle the main function so that we can
always check our code against the actual Rust compiler:

fn main() {
// ...

}

§ We’ll implement assertions so that we can more easily check our
code without writing tests or print statements:

fn main() {
let mut x = 0;
let mut y = &mut x;
*y = *y + 1;
assert_eq!(x, 1);

}

Some Remarks

§ Our parser will also need to handle the main function so that we can
always check our code against the actual Rust compiler:

fn main() {
// ...

}

§ We’ll implement assertions so that we can more easily check our
code without writing tests or print statements:

fn main() {
let mut x = 0;
let mut y = &mut x;
*y = *y + 1;
assert_eq!(x, 1);

}

Some Remarks

§ The AST for FR differs slightly from that of Rust proper:
§ We want explicitly annotate blocks with lifetimes (we’ll handle this

at parsing)
§ We have to explicitly annotated variables with "copy" if we want it

to be copied (we’ll handle this at typing)
§ The term <lval> stands for "L-value" and is now defunct, Rust

now used the term place expression, which is an expression that
represents a memory location

The Abstract Syntax Tree (AST)

pub enum Expr {
Unit,
Int(i32),
Box(Box<Expr>),
Lval(Lval, Copyable),
Borrow(Lval),
MutBorrow(Lval),
Block(Vec<Stmt>, Box<Expr>, Lifetime),
AssertEq(Box<Expr>, Box<Expr>),

}

Aside: Interpreters for Testing

Question. Why build an interpreter?

§ for fun
§ to prototype a language construct
§ to build an oracle for testing

Fuzz Testing is (roughly) the process of testing a program against a
huge number of cases. This is as opposed to unit testing, in which we
test against a small number of well-chosen cases

The problem with fuzzing is that we need a ground truth (one solution is
to take not crashing to be ground truth and generate well-formed
programs)

Another fun link: Miri

https://github.com/rust-lang/miri

Aside: Interpreters for Testing

Question. Why build an interpreter?

§ for fun
§ to prototype a language construct
§ to build an oracle for testing

Fuzz Testing is (roughly) the process of testing a program against a
huge number of cases. This is as opposed to unit testing, in which we
test against a small number of well-chosen cases

The problem with fuzzing is that we need a ground truth (one solution is
to take not crashing to be ground truth and generate well-formed
programs)

Another fun link: Miri

https://github.com/rust-lang/miri

Aside: Interpreters for Testing

Question. Why build an interpreter?

§ for fun
§ to prototype a language construct
§ to build an oracle for testing

Fuzz Testing is (roughly) the process of testing a program against a
huge number of cases. This is as opposed to unit testing, in which we
test against a small number of well-chosen cases

The problem with fuzzing is that we need a ground truth (one solution is
to take not crashing to be ground truth and generate well-formed
programs)

Another fun link: Miri

https://github.com/rust-lang/miri

Aside: Interpreters for Testing

Question. Why build an interpreter?

§ for fun
§ to prototype a language construct
§ to build an oracle for testing

Fuzz Testing is (roughly) the process of testing a program against a
huge number of cases. This is as opposed to unit testing, in which we
test against a small number of well-chosen cases

The problem with fuzzing is that we need a ground truth (one solution is
to take not crashing to be ground truth and generate well-formed
programs)

Another fun link: Miri

https://github.com/rust-lang/miri

Outline

Last Call: Linear Types

FR: High Level

FR: Syntax

Workshop

Tasks

§ Finish assignment 6
§ Finish workshop task from Tuesday (it will be part of assignment 7)
§ I’ll walk around and answer any questions you have about the

material and the upcoming project

	Last Call: Linear Types
	FR: High Level
	FR: Syntax
	Workshop

