
Type Theory and Mechanized Reasoning
(Draft)

February 29, 2024

Contents

1 Introduction 2

2 Induction and Recursion 3
2.1 Induction on Natural Numbers 3
2.2 Strong Induction over Natural Numbers 5
2.3 Induction on Inductively-defined Collections 6
2.4 Further Reading . 9

3 A Brief Tour of Agda 10

4 Classical Propositional Logic 11
4.1 Syntax . 12
4.2 Semantics . 14
4.3 Meta-Theory . 16
4.4 Functional Completeness . 20
4.5 Conjunctive Normal Form . 25
4.6 Further Reading . 28

5 SAT Solvers 29
5.1 Restriction . 30
5.2 DPLL . 32
5.3 CNF Encoding . 35
5.4 Example: Sudoku . 37
5.5 Further Reading . 41

6 Propositional Proofs 42

7 Theories and Models 43

8 The Lambda Calculus 44

1

CAS CS 400: Type Theory and Mechanized Reasoning

1 Introduction
Fill in this section.

2

CAS CS 400: Type Theory and Mechanized Reasoning

2 Induction and Recursion
Induction is a technique in the standard mathematical toolkit for showing that
a property holds of all objects in an inductively defined collection. There are
three kinds of induction we will be interested in: ordinary induction on natural
numbers1 strong induction on natural numbers, and structural induction on gen-
eral inductively-defined collections. We will also briefly discuss the connection
between induction and recursion (saving a lengthier discussion for later).

2.1 Induction on Natural Numbers

The principle of (ordinary) induction on natural numbers says:

In order to prove that a property hold of all natural numbers, it
suffices to prove that it holds of 0 and that, for any natural number
i, if the property holds of i, then it holds of i+ 1 as well.

The first condition is called the base case and the second condition is called the
inductive step. Here is a simple (and hopefully familiar) example.
Fact 1

For every natural number n
n∑

i=1

i =
n(n+ 1)

2

Proof. We prove this by induction on n. For the base case, both sides of the
equation are 0 when n = 0, so the equation holds in this case. For the inductive
step, suppose

j∑
i=1

i =
j(j + 1)

2

1The natural numbers form one of the simplest inductively defined sets.

3

CAS CS 400: TT&MR Induction and Recursion

for an arbitrary natural number j. Then

j+1∑
i=1

i =

(
j∑

i=1

i

)
+ j + 1

=
j(j + 1)

2
+ j + 1

=
j(j + 1) + 2(j + 1)

2

=
(j + 1)(j + 2)

2

which demonstrates that the equation holds when n = j + 1.

In the final sequence of equalities of the above proof, the second line holds
because we were able to assume that

j∑
i=1

i =
j(j + 1)

2

This assumption is called the induction hypothesis; we are hypothesizing that
the property holds of an arbitrary natural number. Much of the work of a proof
by induction is in determining how to make use of the induction hypothesis
(though this is not always the case!).

The principle of induction is often compared to the domino effect. Consider
the following thought experiment: we line up an infinitely long sequence of
dominoes—one on each natural number on the number line—and we tip over
the domino at 0. We can “prove” by induction that every domino eventually
falls.
Fact 2

For every natural number n, the domino at n eventually falls.

Proof. For the base case, the domino at 0 falls because we tipped it over. For the
inductive step, suppose the domino at i eventually fall, for an arbitrary natural
number i. Then the domino at i+ 1 falls directly afterwards, which means that
the domino at i+ 1 eventually falls as well.

4

CAS CS 400: TT&MR Induction and Recursion

2.2 Strong Induction over Natural Numbers

Some “inductive-looking” arguments can’t be proved naturally by ordinary in-
duction. Consider the following example. Recall that a natural number is prime
if it has exactly two divisors: 1 and itself.
Fact 3

For every natural number n, if n ≥ 2, then n can be expressed as a product of prime
natural numbers.

Proof. Let’s try to prove this by induction on n. The base case holds since 0 < 2

(the same is also true when n = 1). For the inductive step, suppose that i can be
expressed as a product of primes, where i is a natural number such that i ≥ 2.
The number i+ 1 is prime, in which case it is already expressed as a product of
primes, or it is composite and there are numbers a and b such that i + 1 = ab

and...

An issue arises here. We’d like to “induct” on the factors of i + 1, express
a and b as products of primes and multiply those expressions together. But we
don’t “know” that a and b can be expressed as products of primes, we only know
that i can. The inductive hypothesis is not strong enough for this proof to be
carried out this way.

The principle of strong induction says:

In order to prove that a property holds of all natural numbers, it
suffices to prove that for any natural number i, the property holds
of i if it holds of every natural number j such that j < i.

This will clearly give us a strong inductive hypothesis; for our inductive step,
rather than assuming that the property holds of i, we get to assume that it holds
of every natural number which is at most i. I will leave it as an exercise to finish the
above using the strong induction principle.

Remark 1. I’d like to dwell for a moment on the distinction between ordinary in-
duction and strong induction on natural numbers. Given the analogy to the domino
effect, both forms of induction may seem obvious. And when we are introduced to both
principles, the distinction may seem artificial; Why would we every choose to use
ordinary induction over strong induction? My hope is that this will become more
clear as we look to formalizing proofs by induction. In broad strokes, it’s easy for a

5

CAS CS 400: TT&MR Induction and Recursion

language like Agda (the language we will use throughout this course) to “recognize”
that ordinary induction is well-founded. In our pen-and-paper proof, we’re eliding a
detail that may seem obvious to us, but requires a small amount of work in a formal
proof, namely that any nontrivial divisor of a natural number n is less than n. As we
will see, ‘i < i+ 1’ is structurally true, whereas that ‘ i

2
< i’ requires proof; division is

a computation whereas ‘+1’ is a constructor (as we will see below).

2.3 Induction on Inductively-defined Collections

In other course, we might take great care defining inductively-defined collec-
tions. Bus since we will ultimately take a computer scientific (specifically, type
theoretic) perspective on induction, we will simply take an inductively-defined
collection to be an algebraic data type (ADT).2 If you don’t recall exactly what
an ADT is, we’ll see them very soon in the context of Agda (and it may be help-
ful to peak at the next chapter). In the meantime, let’s consider a simple example:
lists. In a language with pointers, we might define a linked list as being one of
two things:

• a grounding object like null representing empty;

• a node with an element and a point to another linked list.
In a function language like OCaml, lists are represented in a similar way:
type 'a list

= Nil
| Cons of 'a * 'a list

The “inductive” part of this definition is that lists are defined in terms of
themselves. This might seem dubious at first; How can we refer to lists in the
definition of lists, before they’re fully defined?

Nil and Cons are constructorswhich means they represent values (e.g, they
cannot be further “computed”). The reference to list in the definition of list
means Cons can “build onto” other lists; we have to have already constructed
another list (e.g., Nil).3 Formally speaking, lists are freely generated by the con-
structors Nil and Cons.

2This is clearly not the most formal definition of inductively-defined collections, but it allows
us to leverage our understanding of ADTs and functional programming, which tend to be
stronger than our intuitions of, say, sets.

3This is not strictly true, even in OCaml. It is possible to write let l = Cons (Nil, l),
which would be the circular list of empty lists.

6

CAS CS 400: TT&MR Induction and Recursion

Natural numbers have a similar inductive characterization:

• zero is a natural number;

• if n is a natural number, then so is suc(n).

So there are natural numbers zero, suc(zero), suc(suc(zero)), and so on. We may
think of the number of ‘suc’ constructors appearing in the value as the natural
number represented by that value. We can write this in OCaml as an ADT:
type nat

= Zero
| Suc of nat

The constructors Zero and Suc are pronounced “zero” and “successor”, respec-
tively, where suc(i) represents the number i+ 1 (i.e., ‘+1’ is a constructor).

Once we have inductively-defined collections (i.e., ADTs) we can in essence
do one of two things:

• define functions on ADTs via pattern matching;

• make formal claims about those functions.

The former is what we will take as what we mean when we use the term “recur-
sion”, again avoiding the weighty foundational questions about what recursion
is, and instead building on our intuitions about writing programs with recur-
sion. For the latter, we will need to be able to induct on the structure of ADTs.

The principle of structural induction on inductively-defined collections, is
tricker to state, but is roughly says:

In order to prove that a property holds of all values of an algebraic
data type adt, it suffice to prove that if Const(e1, . . . , ek) (or Const
in the case that k = 0) is a value of adt and the property holds of all
values of adt in {e1, . . . , ek}, then it also holds of Const(e1, . . . , ek).

This may be easier to parse in a specific case. The principle of structural induc-
tion on lists says:

In order to show that a property holds of all lists it suffices to show
that it holds of the empty list Nil and that the property holds of the
nonempty list Cons(x, xs) given that it holds of xs.

7

CAS CS 400: TT&MR Induction and Recursion

Example 1
Consider the standard (non-tail-recursive) definition of list appending writ-
ten in OCaml:
let rec append l r =

match l with
| Nil -> r
| Cons(x, xs) -> Cons(x, append(xs, r))

One formal statement we may want to make about append is that

append l Nil = l

for any list l. This may seem obvious, but as defined append l Nil requires
time linear in the size of l to terminate, so it stands to reason that after the
computation has completed, it would take some effort to verify the property
holds of the resultant list.

Proof. For the Nil case, append Nil Nil = Nil (the right-hand argument)
by definition. For the Cons case,

append Cons(x, xs) Nil = Cons(x, append(xs, Nil))
= Cons(x, xs)

where the last equality follows from the inductive hypothesis, i.e., that

append(xs, Nil) = xs

There is quite a bit more we could say about this, but we will leave it for
when we start writing proves by induction using Agda. To conclude, I want
to tease one point: one beautiful feature of a dependently typed language is that
there is no distinction between induction and recursion. Proofs and data take on
the same ontological status (there is little which is fundamentally different about
the number 2 and a proof of, say, Goldbach’s conjecture) which means that we
will be able to “compute with” proofs. In particular, we will be able to pattern
match within proofs when we want to prove by induction. This is mediated by
what is called the Curry-Howard Isomorphism, something which will occupy us
for much of the course.

8

CAS CS 400: TT&MR Induction and Recursion

2.4 Further Reading

Fill in this section.

9

CAS CS 400: Type Theory and Mechanized Reasoning

3 A Brief Tour of Agda
Fill in this section.

10

CAS CS 400: Type Theory and Mechanized Reasoning

4 Classical Propositional Logic
Whenwe communicate, wemake statements within and about theworld. Some
of these statements are true or false depending on the state of the world. The
truth of the statement “it is raining”, for instance, depends on the weather. But
some statements seem to be true no matter the context, or even the appreciable
content: “it is either raining or not raining” seems irrefutable and, more gen-
erally, “either x or not x” seems irrefutable no matter the statement which x
stands for.1 One of the goals of (classical) propositional logic is to model this
phenomenon.

In the above example, the word “or” is an example of a Boolean connective.2
Connectives are used to “connect” two or more statements to make a new state-
ment whose truth is contingent on the truth of its constituent parts. Proposi-
tional logic may be understood as the study of Boolean connectives: What are
they? How do they work? How many are there? Which ones are necessary? Which
ones are useful?

Since this is the first logic we are studying, we need to lay out the rules of the
game. To introduce a logic, we are (typically) required to present two things:
the syntax and the semantics.

• Syntax refers to the rules which govern what count as well-formed state-
ments in our logic. We will define syntax formally in the subsequent sec-
tion, but roughly speaking, it is the concern of syntax to discern between
“I ate my lunch in my office” and “I my lunch my office eating” as (in the
first case) a statement which has the potential to be meaningful and (in the
second case) a sequence of words (or linguistic units) which is nonsense.

• Semantics refers to the rules which govern the meaning of well-formed
statements. It is the concern of semantics to discern between “I am cold”
and “I am cold, and I shiver when I’m cold, but I’m not shivering” as (in
the first case) a statement whose truth is contingent on the state of the
world and (in the second case) one which cannot be true, no matter the
state of the world.

1Those remotely familiar with the upcoming material may recognize this as the law of the
excluded middle, and it may seem more or less refutable depending on your philosophical incli-
nations.

2“Boolean” refers to George Boole, who is considered a founder of modern (algebraic) logic.

11

CAS CS 400: TT&MR Classical Propositional Logic

Remark 2. It is difficult to adequately stress how important it is to keep in mind
that syntactic objects have no inherent meaning. When we take in the statement
“I am cold and I have no jacket” (either by reading it or hearing it) we know almost
immediately what our interlocutor means. But in the split-second before we’ve grokked
the statement, it’s just a sequence of characters (or sounds or linguistic units). We
internally parse the statement and imbue the “and” in the statement with meaning so
that we understand our interlocutor to be expressing that both statements on either side
of the “and” are true.

Perhaps this is a premature warning, but I think it is worth making explicit from
the start.

In what follows, we present the syntax and semantics of classical proposi-
tional logic. The qualifier “classical” is unimportant now, but is meant to signal
that we will eventually consider non-classical logics, e.g., intuitionistic logic.
Wewill then prove a handful of meta-theoretic results about propositional logic,
with an eye towards our next topic: SAT solvers.

4.1 Syntax

The basic syntactic objects of propositional logic are propositional variables, which
are placeholders for unanalyzed atomic (i.e., not compound) sentences. For-
mally, we fix at the start a set propositional variable symbols.
Definition 1

Let Var denote a set of propositional variable symbols {x1, x2, x3, . . . }.

We should come to think of propositional variables as akin to ordinary variables
in algebra. We can even think of the expression ‘2x + 5’ as a syntactic object,
which we can give a value once we are given a value of x. Wewill be agnostic to
the ontological status of variables (and syntactic objects in general) but it would
not be difficult to find a philosopher to butt heads with about this.

Once we have variables, we can define the notation of well-formed state-
ments, which we will subsequently refer to as formulas.
Definition 2

The collection of propositional formulas, denoted by Prop, is defined induc-
tively as follows.

• Every propositional variable is a propositional formula.

12

CAS CS 400: TT&MR Classical Propositional Logic

• If P and Q are propositional formulas, then so are (¬P) and (P ∨Q) and
(P ∧Q).

The symbols ‘¬’ and ‘∨’ and ‘∧’ are pronounced “not” and “or” and “and”, respec-
tively. Remember, these formulas are syntactic objects, they have no inherent
meaning until we given them meaning by defining our syntax. But that doesn’t
stop us from trying to model English sentences (with greater or less success) as
propositional formulas.
Example 2

It is raining. x1
It is either raining or not raining. (x1 ∨ (¬x1))
It is cold. x2
It it cold but not rainy. (x2 ∧ (¬x1))
I have my umbrella. x3
I did not forget my umbrella. (¬(¬x3))
Either it is raining or I have my umbrella. ((x1 ∧ (¬x3)) ∨ ((¬x1) ∧ x3))

At this point, most standard texts on logic launch into a careful analysis of
syntax: Is a formula a sequence of symbols? Are parentheses part of our syntax? What
about whitespace? Does every sequence of symbols represent at most one formula?
We will choose to ignore these questions and use the following principle: a
propositional formula is not represented as a sequence of characters, but as a
value of an algebraic data type (in line with the previous chapter), e.g., in Agda:
Var : Set
Var = Nat

infixr 6 _and_
infixr 5 _or_

data Prop : Set where
var : Var -> Prop
not : Prop -> Prop
and : Prop -> Prop -> Prop
or : Prop -> Prop -> Prop

When we write down a formula in linear fashion (e.g., (x1,∨(x2 ∧ (¬x3)))) it is
shorthand for a value of this ADT. And to simplify the process of writing down
a formula in linear fashion, we will follow the principles which are standard in
logic and, for students of computer science, may be somewhat familiar: they

13

CAS CS 400: TT&MR Classical Propositional Logic

are the same rules for parsing compound conditionals in most programming
languages.

• We will use any reasonable names for propositional variables, e.g., x, y, z,
w, etc.

• We will ignore outer parentheses, so x ∧ y is shorthand for (x ∧ y).

• Negation takes highest precedence, so ¬x ∨ y is shorthand for (¬x) ∨ y.

• Conjunction takes higher precedence than disjunction so x∧y∨z is short-
hand for (x ∧ y) ∨ z.

• Conjunction is right-associative so a∧b∧c∧d is shorthand for a∧(b∧(c∧d)).
Same for disjunction.

The hope is that, given a sequence of symbols (i.e., a formula written in linear
fashion) we can determine its associated value in Prop, and if we can’t we ask
the person who wrote it to clarify (rather that pinning the blame on the syntax
itself).
Example 3

The following are the same formulas as in Example 2, but expressed in this
nicer shorthand, as well as in Agda.

r r = var 1
r ∨ ¬r r or not r
c c = var 2

c ∧ ¬r c and not r
u u = var 3

¬¬u not (not u)
(r ∧ ¬u) ∨ (¬r ∧ u) (r and not u) or (not r and u)

4.2 Semantics

Our next task is to determine the meaning of well-formed formulas. At the risk
of becoming overly-philosophical, this requires briefly discussing the meaning
of “meaning”. For classical logic, meaning tends to be truth. We will consider
other notions of meaning (e.g., for intuitionistic logic) but it suffices for now

14

CAS CS 400: TT&MR Classical Propositional Logic

to take our task to be determining the truth or falsity of a given propositional
formula.

Naturally, there is more to it than this. Consider the formula x (this is a
formula because all variables are formulas). Whether or not x is true depends on
the value given to x. That is, the truth depends on the state of the world (or a
state of affairs in the Pears/McGuinness translation of Wittgenstein’s Tractatus).
Definition 3

A valuation is a function from Var to the set {0, 1}.

The value 1 represents truth and the value 0 represents falsity (this will come to
be convenient). If instead we use Bool in Agda, we can write this definition as
a type synonym:
Val : Set
Val = Var -> Bool

If we think of propositional variables as standing for the possible atomic state-
ments that can be made of the world, then a valuation expresses how the world
is, what is and is not the case.

Given a valuation v, we can determine the truth-value of x, it’s just v(x);
the valuation tells use whether or not x is the case. What’s more, we can ex-
tend a valuation to apply to any formula. Hopefully this is seems reasonable: if
we know the truth or falsity of every atomic statement, we should be able to
determine the truth or falsity of every compound statement.
Definition 4

Given a valuation v, evaluation with respect to v, written v : Prop → {0, 1}, is
defined recursively as follows.

v(x) = v(x) where x ∈ Var

v(¬P) =

1 v(P) = 0

0 otherwise

v(P ∨Q) =

1 v(P) = 1 or v(Q) = 1

0 otherwise

v(P ∧Q) =

1 v(P) = 1 and v(Q) = 1

0 otherwise

15

CAS CS 400: TT&MR Classical Propositional Logic

This definition may look as though it’s not doing anything. We define the truth
value of disjunction using the word “or” and that of conjunction using the word
“and”. But this is the point. We’re “transferring” from syntax (the symbol ‘∧’)
to semantics (the word “or”). In Agda:
eval : Val -> Prop -> Bool
eval v (var x) = v x
eval v (not p) = notb (eval v p)
eval v (p and q) = eval v p && eval v q
eval v (p or q) = eval v p OR eval v q

Remark 3. The evaluation function is performing exactly what a calculator does with
an arithmetic expression: given ‘2+3’ it “change” the ‘+’ symbol into the plus operation
and applies it to the arguments 2 and 3. We’ve just built a propositional truth-value
calculator.

4.3 Meta-Theory

Once we have a logic, we’re often not so interested in reasoning within the
logic (though we will come back to this when we start using SAT solvers) but
rather, what can be said “about” reasoning within the logic (this is where the
‘meta’ part of meta-theory comes from). In order to reason about propositional
logic, we need a couple important semantic notions.
Definition 5

A formula ϕ is valid (or is a tautology) if v(ϕ) = 1 for every valuation v. A
formula ϕ is satisfiable if v(ϕ) = 1 for some valuation v.

Validity corresponds to the phenomenon noted at the opening of the chapter,
that there are statements which seems unassailable, no matter the context. Such
statements over propositional variables which stand for their constituent parts
(e.g., either x or not x) are exactly the valid propositional formulas.
Example 4

In the syntactic shorthand we introduced at the end of the last section, the
example statement given in the introduction of this chapter is x∨¬x. This is
an example of a tautology. To demonstrate this, suppose that v is an arbitrary
valuation. If v(x) = 1, then by definition v(x ∨ ¬x) = 1. If v(x) = 0, then
by definition v(¬x) = 1, which implies v(x∨¬x) = 1. Therefore, no matter

16

CAS CS 400: TT&MR Classical Propositional Logic

the valuation (and in particular, no matter how the valuation assigns truth
or falsity to x) the formula x ∨ ¬x is made true.

The formula (r ∧ ¬u) ∨ (¬r ∧ u) is not valid. Let v be a valuation such
that v(r) = 1 and v(u) = 1; it may assign truth values to all other variables
as it pleases. Since v(u) = 1, it follows that v(¬u) = 0 and, therefore, v(r ∧
¬u) = 0. Similarly, we may demonstrate that v(¬r ∧ u) = 0. Therefore,
v((r ∧ ¬u) ∨ (¬r ∧ u)) = 0 (as both constituent parts of the disjunction are
false).

This formula is satisfiable. Let v be a valuation such that v(r) = 1 and
v(u) = 0. Then v(r ∧ ¬u) = 1, which then makes the entire disjunction
true.

Remark 4. At this point take advantage of the fact that truth values are represented
by numbers. This allows us to write our evaluation function in terms of function on
numbers:

v(¬P) = 1− v(P)

v(P ∨Q) = max(v(P), v(Q)) =
⌈
v(P) + v(Q)

2

⌉
v(P ∧Q) = min(v(P), v(Q)) = v(P) ∗ v(Q)

The argument that x∨¬x is a tautology reduces to recognizing thatmax(1−x, x) = 1

if x = 0 or x = 1. For another example, if we want to demonstrate that x ∧ ¬x is
unsatisfiable, we simply have to recognize that

v(x ∧ ¬x) = v(x) ∗ (1− v(x)) = 0

no matter the value of v(x).

Validity and satisfiability are dual notions (in the way that “for every” and
“for some” are dual notions). This is demonstrated nicely by the following fact.
Fact 4

A formula ϕ is valid if and only if ¬ϕ is unsatisfiable.

I will leave it to the reader to convince themselves of the fact, it follows
immediately from the definitions. This allows us to reduce the problem of de-
termining if a formula is valid to determining if its negation is unsatisfiable (e.g.,
by a SAT solver).

17

CAS CS 400: TT&MR Classical Propositional Logic

A majority of formulas are not valid,3 and ultimately, absolute validity is not
as useful as validity relative to a collection of assumptions. The statement “I am
cold” is not a tautology, it depends on the state of the world (e.g., my ability
to thermo-regulate). But assuming I am cold and that I shiver when I’m cold, it
should then follow that I am shivering. This is the notion of entailment.
Definition 6

A set of formulas Γ entails the formula ϕ, written Γ |= ϕ, if every valuation which
satisfies every formula in Γ also satisfies ϕ.

Notation 1. For two formulas ϕ and ψ, we will write ‘ϕ |= ψ’ instead of ‘{ϕ} |= ψ’.
We will write Γ 6|= ϕ if Γ does not entail ϕ.
Example 5

As a simple example, P ∧Q |= P , as any valuation v such that v(P ∧Q) = 1

must make v(P) = 1 by definition (alternatively, if v(P) ∗ v(Q) = 1, then it
must be that v(P) = 1).

As a more complicated example, P ∧ Q |= ¬(¬P ∨ ¬Q). Let v be a
valuation such that v(P ∧ Q) = 1, so v(P) = 1 and v(Q) = 1. Using our
alternative definition of evaluation, we just need to recognized that

v(¬(¬P ∨ ¬Q)) = 1−max(1− v(P), 1− v(Q)) = 1

That this entailment holds is to say that, if P andQ are true, then it is impos-
sible that neither P norQ is true. Hopefully this rings true to your intuitions
about natural language.

To show that an entailment does not hold, we have to exhibit a valua-
tion which makes the left-hand-side true and the right-hand-side false. For
example, we have x ∨ y 6|= x ∧ y since we can consider any valuation v such
that v(x) = 1 and v(y) = 0. If one of two atomic statements is true, it does
not necessarily mean that both are true.

The last semantic notion we consider for now will, again, feel familiar to
students of computer science.
Definition 7

The formulas ϕ and ψ are logically equivalent, written ϕ ≡ ψ, if v(ϕ) = v(ψ)

for every valuation v. Equivalently ϕ |= ψ and ψ |= ϕ.
3Despite this, determining which formulas are valid is a computationally difficult problem.

18

CAS CS 400: TT&MR Classical Propositional Logic

Formulas are logically equivalent if they “look the same” from the perspec-
tive of evaluation. Logically equivalence captures the experience we may have
as programmers when we realize we can rewrite the condition of a conditional
statement in a simpler way. When we replace a Boolean expression with some-
thing else and the behavior of the program does not change, we are replacing it
with something which, as a formula, is logically equivalent.
Example 6

We may write code in Python like:
if (a or b) or (not b and c):

DO SOMETHING

only to realize that we could have written:
if (a or b) or c:

DO SOMETHING

because, if the first disjunction evaluates to False, then it must be that the
expression (not b) evaluates to True.

Example 7
In a different course (e.g., one more philosophically or historically oriented)
we may spend more time looking a number of important named logical
equivalences. For our purposes, we will focus on three. The first is dou-
ble negation elimination:

P ≡ ¬¬P

which, in our numeric definitions of evaluation, amounts to the fact that

v(P) = 1− (1− v(P))

for any choice of valuation v. The next two are De Morgan’s Laws:

P ∧Q ≡ ¬(¬P ∨ ¬Q)
P ∨Q ≡ ¬(¬P ∧ ¬Q)

19

CAS CS 400: TT&MR Classical Propositional Logic

or as equations:

v(P) ∗ v(Q) = 1−max(1− v(P), 1− v(Q))

max(v(P), v(Q)) = 1− (1− v(P)) ∗ (1− v(Q))

for any choice of valuation v. I will leave it to the reader to convince them-
selves that the above equations hold (remember, evaluation can only yield
the value 0 or 1, these equations do not hold otherwise).

As you may expect, logical equivalence is an equivalence relation4 Perhaps
more importantly, it is compatible with the connectives in our logic.
Fact 5

For any propositional formulas P, P ′, Q,Q′, if P ≡ P ′ and Q ≡ Q′, then

¬P ≡ ¬P ′

P ∨Q ≡ P ′ ∨Q′

P ∧Q ≡ P ′ ∧Q′

This means we can replace and sub-formula with something which is logically
equivalent and it will remain logically equivalent.
Example 8

When proving logical equivalence, it is common to “pick up” double-negations
in the application of other equivalences:

¬(¬P ∨Q) ≡ ¬¬P ∧ ¬Q ≡ P ∧ ¬Q

The first equivalence is an application of De Morgan’s law. The second is an
application of double-negation elimination on the first conjunct of ¬¬P ∧Q.

4.4 Functional Completeness

We now aim to prove a nontrivial meta-theoretic result about propositional
logic. As a warmup, if you’ve seen any amount of logic—for example, in a

4This means for any formulas P ,Q, andR, we have (1) P ≡ P and (2) P ≡ Q impliesQ ≡ P
and (3) P ≡ Q and Q ≡ R implies Q ≡ R.

20

CAS CS 400: TT&MR Classical Propositional Logic

discretemathematics course—youmay be thinking: What about implication? Isn’t
‘P implies Q’ a fundamental form of reasoning? Haven’t we already used implication
in our example of propositional statements in natural language?

Implication does not appear explicitly in our logic because it don’t need to.5
That is to say, any statement we could write with an implication symbol ‘→’ is
logically equivalent to a statement we can already write in our logic.

Remark 5. This is not to say that there wouldn’t be a benefit to explicitly including
implication. If we, for instance, cared about the size of formulas (measured as number
of connectives) in logic, including implication would make a difference. But if we only
care about formulas up to logical equivalence, then implication can be defined within
the logic.

As a thought experiment, suppose that we included the following case in our
definition of propositional formulas (Definition 2):

• If P and Q are propositional formulas, then so is (P → Q).

This requires us to include a case in our definition of evaluation (Definition 4).
When should ‘P → Q’ be considered true? Hopefully we can intuit that it
should be false if P is true and Q is false.

But what about if P is false? Well, to say “when pigs fly” (or any other idiom
to this effect) is to say that if pigs fly then x is certainly true, where x an be any
(usually ridiculous) statement. So when P is false, it doesn’t matter whether or
notQ is true, the whole implication is true. This means including the following
case to Definition 4:

v(P → Q) =

0 v(P) = 1 and v(Q) = 0

1 otherwise

We should already be suspicious of this inclusion because the truth-value of an
implication seems to depend only on conjunction. Within our logic augmented
with implication, we have the following fact.
Fact 6

P → Q ≡ ¬(P ∧ ¬Q) ≡ ¬P ∨Q for any formulas P and Q.

5I chose the collection of connectives in our presentation in part because they should are the
most familiar to programmers.

21

CAS CS 400: TT&MR Classical Propositional Logic

Proof. Let v be a valuation such that v(P → Q) = 1. This implies v(P) 6= 1 or
v(Q) 6= 0. If v(P) = 0, then v(¬P) = 1 and so v(¬P ∨ Q) = 1. If v(Q) = 1,
then v(¬P ∨Q) = 1 as well. This shows P → Q |= ¬P ∨Q.

The proof that ¬P ∨ Q |= P → Q is similar, and the proof that P → Q ≡
¬(P ∧ ¬Q) is similar as well.

We will now freely write formulas like ‘P → Q’ as shorthand for ‘¬P ∨Q’.
In Agda, this is akin to writing implication as a function instead of a constructor.
implies : Prop -> Prop -> Prop
implies : p q = not (p and q)

We could take this further: De Morgan’s laws tell us that

P ∨Q ≡ ¬(¬P ∧ ¬Q) and P ∧Q ≡ ¬(¬P ∨ ¬Q)

which means we only really need disjunction or conjunction but not both. In
Agda, for example:
or' : Prop -> Prop -> Prop
or' p q = not (not p and not q)

and' : Prop -> Prop -> Prop
and' p q = not (not p or not q)

This warmup is meant to preempt a more general question: Are there any
logical connectives we could add to our logic that would make it more expressive? Or
is every connective we could add logically equivalent to a formula we could write using
‘¬’ and ‘∨’? This is the question of functional completeness.

We first need to think more carefully about what a connective is. Take, for
instance, a more complex connective, a ternary (three argument) connective for
if-then-else reasoning.
Example 9

The formula P ? Q : R represents the statement ‘if P then Q else R’. We
can add this to our logic and expand our evaluation function to include:

v(P ? Q : R) =

v(Q) v(P) = 1

v(R) otherwise

22

CAS CS 400: TT&MR Classical Propositional Logic

It is not difficult to imagine that more complicated connectives would warrant
more complicated truth-value calculations. But in any case, the kind of calcula-
tion is the same: we’re applying a function to the truth-values of the constituent
parts of the statement.
Definition 8

A n-variate Boolean function is a function from {0, 1}n to {0, 1}.

In general we can think of an arbitrary Boolean connective as a Boolean
function, one which tells us how to calculate the truth-value of the new com-
pound statement it represents in terms of the truth-values of its constituent parts.
In Agda, we can use dependent types to create a type synonym for Curried
Boolean function:
BoolFun : (n : Nat) -> Set
BoolFun zero = Bool
BoolFun (suc n) = Bool -> BoolFun n

Example 10
We can write the Boolean function used for evaluating statements of the
form P ? Q : R in Agda:
if-then-else : BoolFun 3
if-then-else true q r = q
if-then-else false q r = r

Wecan now rephrase the question of functional completeness in terms of Boolean
functions.
Definition 9

An n-variate Boolean function is represented by the formula ϕ is

v(ϕ) = F (v(x1), . . . , v(xn))

for all valuations v. A set of connectives C is functionally complete if every
Boolean function (on any number of arguments) is represented by a formula using
the connectives in C .

Notation 2. A formula ϕ over the variables x1, . . . , xn also defines a Boolean func-
tion. We write Fϕ : {0, 1}n → n for the Boolean function given by

Fϕ(b1, . . . , bn) = vb1,...,bn(ϕ)

23

CAS CS 400: TT&MR Classical Propositional Logic

where vb1,...,bn(xi) = bi for i ∈ {1, . . . , n}, and vb1,...,bn(x) = 0 otherwise. When we
refer to such a function for a single connective, we will just write the connective, e.g., we
will write F∧ instead of Fx1∧x2 .
Example 11

(Exclusive Disjunction)The propositionP⊕Q represents the statement “either
P or Q but not both” or “exactly one of P and Q holds”. The Boolean
function for exclusive disjunction is

F (x1, x2) = x1 + x2 (mod 2)

and this function is represented by the formula

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

We can prove this by working through all possible values of x1 and x2 (we
saw two cases in Example 4).

Theorem 1
{¬,∨,∧} is a functionally complete set of connectives.

We’ll come back to the proof of this theorem in the next section. For now,
we can use this theorem to bootstrap the proofs of functional completeness for
other sets of connectives.
Fact 7

If C is a complete set of connectives and for every connective □ ∈ C , the function F□

is represented by a formula using the connectives in D, then D is also functionally
complete.

Corollary 1
{¬,∨} and {¬,∧} are functionally complete sets of connectives.

Proof. The function F¬ is represented by a ¬x1 and, by De Morgan’s law, the
function F∧ is represented by ¬(¬x1 ∨¬x2), so {¬,∨} is functionally complete.
Similarly for {¬,∧}.

24

CAS CS 400: TT&MR Classical Propositional Logic

4.5 Conjunctive Normal Form

We conclude the chapter by discussing normal forms, which will lead to a proof
of Theorem 1 above. In the next chapter, we will cover algorithms for deter-
mining if a formula is satisfiable. In this algorithmic setting, we want more
control over the “shape” of the formula given as input. Logically equivalent
formulas which have nice properties tend to be called normal forms. This is akin
to Jordan normal forms, which are representations of matrices that are in some
sense equivalent (they represent the same linear operator) and in some sense have
nicer properties (they’re upper triangular, their diagonal elements are eigenval-
ues, etc.).
Definition 10

A literal is a propositional variable or its negation (e.g., x or ¬y). A clause is
a disjunction of literals (e.g., x ∨ ¬y). A conjunctive normal form (CNF)
formula is a conjunction of clauses (e.g., (x ∨ ¬y) ∧ (y ∨ z)).

Notation 3. A literal is said to be positive if it is just a variable, and negative if
it is the negation of a variable. It will be convenient to write x0 for the negative literal
¬x and x1 for the positive literal x. In particular, it is convenient that x1−a is the literal
with opposite polarity, and that xa is satisfied by a valuation v if v(x) = a.

We will use ‘∧’ and ‘∨’ notation (similar to ‘∏’ and ‘∑’ notation for products and
sums) to represent large clauses and CNF formulas, e.g.,

k∨
i=1

li and
m∧
i=1

Ci

One nice feature of CNF formulas is that the question of their satisfiability
has a simple combinatorial framing.
Fact 8

A CNF formula is satisfiable if and only if there is a valuation which satisfies at
least one literal in every one of its clauses.

Another is that they have simple representation in code:
Lit : Set
Lit = Var & Bool

25

CAS CS 400: TT&MR Classical Propositional Logic

Cls : Set
Cls = List Lit

CNF : Set
CNF = List Cls

eval-lit : Val -> Lit -> Bool
eval-lit v (x , b) = v x ==b b

eval-cls : Val -> Cls -> Bool
eval-cls v = anyL (eval-lit v)

eval-cnf : Val -> CNF -> Bool
eval-cnf v = allL (eval-cls v)

And (part of the point) up to logical equivalence, they are sufficient for propo-
sition logic.
Theorem 2

Every proposition formula is logically equivalent to a CNF formula.

Wewill also delay the proof of this theorem, and take aminor detour through
another standard normal form. A disjunctive normal form (DNF) formula is
the same as a CNF formula with conjunction and disjunction swapped; that is,
a DNF formula is a disjunction of conjunctions of literals. DNF formulas will
not be our focus, but they are a useful intermediate representation on our way
to proving Theorem 2.
Theorem 3

Every Boolean function is represented by a DNF formula.

Proof. The power of DNF formulas comes from their ability to simulate truth
tables. In essence, a truth table of a Boolean function is the entire list of its
input-output behavior.

Our first observation: conjunctions represent functions which have exactly
one input whose output is 1. Let 1b1,...,bn : {0, 1}n → {0, 1} denote the Boolean
function where

1b1,...,bn(x1, . . . , xn) =

1 xi = bi for i ∈ {1, . . . , n}
0 otherwise

26

CAS CS 400: TT&MR Classical Propositional Logic

I will leave it as an exercise to verify that 1b1,...,bn is represented by the formula

xb11 ∧ · · · ∧ xbnn

If conjunctions represent functions with a single input whose output is 1, then
a disjunction of conjunctions should represent a function which has output 1
on any of the inputs which make one of its disjuncts output 1. For example,
F⊕(x1, x2) = 1 exactly when x1 = 1 and x2 = 0 or x1 = 0 and x2 = 1. Hence,
we get the representative formula

(x11 ∧ x02) ∨ (x01 ∧ x12)

For an arbitrary function F , we can “collect together” the inputs which have
output 1 into a single formula.

The support of a Boolean function F , written supp(F), is the collection of
all inputs (b1, . . . , bn) such that F (b1, . . . , bn) = 1. The formula

∨
(b1,...,bn)∈supp(F)

(
n∧

i=1

xbii

)

is a DNF formula which is true exactly when one of its disjuncts is true, which
occurs exactly when the values assigned to x1, . . . , xn are in the support of F
(i.e., when F outputs 1). Therefore, this formulas represents F .

Note that this immediately implies Theorem 1 since DNF formulas are writ-
ten with the connectives in {¬,∧,∨}. We also can proof Theorem 2 as a corol-
lary by a neat trick.

Proof. (of Theorem 2) Let ϕ be an arbitrary propositional formula. By double
negation elimination, we have ϕ ≡ ¬¬ϕ. Since F¬ϕ is represented by a DNF
formula ψ (by Theorem 3) we also have ¬ϕ ≡ ψ. Now the trick: the negation
of a DNF formula can readily be shown to be logically equivalent to a CNF
formula. This requires a generalization of De Morgan’s laws:

¬
m∧
i=1

Pi ≡
m∨
i=1

¬Pi ¬
m∨
i=1

Pi ≡
m∧
i=1

¬Pi

With this, we can “push” the negation in ¬ψ through the disjunction and con-

27

CAS CS 400: TT&MR Classical Propositional Logic

junctions, swapping them in the process, and ending with a CNF formula.

¬ψ ≡ ¬
m∧
i=1

(
ki∨
j=1

y
aj
j

)

≡
m∨
i=1

¬

(
ki∨
j=1

y
aj
j

)

≡
m∨
i=1

 kj∧
j=1

¬yajj

≡

m∨
i=1

(
ki∧
j=1

y
1−aj
j

)

Finally we have that ϕ ≡ ¬¬ϕ ≡ ¬ψ and ¬ψ was shown to be logically equiva-
lent to a CNF formula, so ϕ is also logically equivalent to a CNF formula.

4.6 Further Reading

Fill in this section.

28

CAS CS 400: Type Theory and Mechanized Reasoning

5 SAT Solvers
The CNF satisfiability problem (CNF-SAT or just SAT for short) is the compu-
tational decision problem of determining if a given CNF formula is satisfiable.
SAT is a fundamental problem in complexity theory because a vast number of
decision problems reduce to it (e.g., there is a polynomial-time transformation
T from graphs to formulas such that a graphG is 3-colorable if and only if T (G)
is satisfiable). This is to say, if we could solve SAT efficiently, we could solve
this vast number of decision problems efficiently. This is encapsulated in the
Cook-Levin Theorem.1
Theorem 4

SAT is NP-complete.

As this is not a complexity theory course, we won’t dwell on the this. It suf-
fices to say that SAT is believed to be a computationally intractable problem.
And yet, there is a community of computer scientists and engineers construct-
ing algorithms—and, perhaps more importantly, implementing algorithms—for
SAT. These software tools are collectively called SAT solvers and, despite the
supposed difficulty of SAT, they are used for industrial and research applications
to determine the satisfiability of CNF formulas with millions of variables and
clauses.

Remark 6. An important caveat to this story-line is that NP-completeness is about
worst-case complexity. This does not rule out the possibility that SAT is tractable
for specific subsets of CNF formulas. It is generally believed that the formulas which
appear in practice are relatively easy to solve, and it is an active area of research to better
understand the structure of CNF formulas generated by industry.

Wewill consider a simple algorithm for SAT called theDavis-Putnam-Logemann-
Loveland procedure (DPLL for short) named after its discoverers. DPLL is a back-
tracking algorithm, similar to the kind used to solve games, and despite its sim-
plicity, it is the basis of many state-of-the-art SAT solvers. We begin by build-
ing up some language for partial assignments, which we refer to as assignments,
below.

1Students at Boston University are in a unique position to appreciate this result given that
Leonid Levin is (as of writing this) still a faculty member of the computer science department.

29

CAS CS 400: TT&MR SAT Solvers

5.1 Restriction

We defined evaluation with respect to a valuation, which provided truth-values
for all propositional variables. When we define DPLL, we’re going to build a
partial valuation one literal at a time (this is how we’re going to “branch-and-
bound”.
Definition 11

An assignment is a set of literals in which no literal appears both positively and
negatively.

We can think of an assignment as a valuation in which we do not commit to a
truth-value for every variable. In Agda, we could use either of the two repre-
sentations:
PVal : Set
PVal = Var -> Maybe Bool

Asn : Set
Asn = List Lit

ans-to-pval : Asn -> PVal
ans-to-pval [] v = Nothing
ans-to-pval ((x , b) :: ls) v with x == v
... | true = Just b
... | false = ans-to-pval ls v

Given an assignment α which assigns values to every variable appearing in a
formula ϕ, we can determine the truth-value of ϕ. If there is a variable in ϕ

which is not assigned by α, it may still be possible to determine the truth-value
of ϕ. Take, for example, the assignment {x1} and the formula x1 ∨ y0. Since
x is assigned to be true, it doesn’t matter what value y is assigned to be, the
truth-value of ϕ is 1.

But it may be that we cannot determine the truth-value of ϕ. For the as-
signment {x0} and formula x1 ∨ y0, the truth-value depends on the value given
to y. And we can express that dependence as another CNF formula: y0. If α′

satisfies y0, then α∪α′ satisfies x1∨y0, e.g., since {y0} satisfies y0, the assignment
{x0, y0} satisfies x1 ∨ y0.

This is the notion of restriction. Given an assignment, we can either deter-
mine the truth value of a CNF formula, or we can find a new (smaller) formula
which is equisatisfiable.

30

CAS CS 400: TT&MR SAT Solvers

Definition 12
A transformation T : Prop → Prop preserves satisfiability given that for any
formula ϕ, if ϕ is satisfiable then so is ϕ. We say that ϕ and T (ϕ) are equisatis-
fiable (or that T is an equisatisfying transformation) if ϕ is satisfiable if and only
if T (ϕ) is satisfiable.

Equisatisfiability will play a greater role later in this section. It is important to
note that if two formulas are equisatisfiable, they are not necessarily logically
equivalent. If T is the transformation ϕ 7→ ϕ ∧ x, where x is a variable does not
appear in ϕ, then ϕ and T (ϕ) are equisatisfiable, but not logically equivalent.
Definition 13

The restriction of a CNF formula ϕ by an assignment α, written α(ϕ), is defined
as follows.

α(xa) =

1 xa ∈ α

0 x1−a ∈ α

xa otherwise

α

(
k∨

i=1

li

)
=

1 α(li) = 1 for some i ∈ {1, . . . , k}
0 α(li) = 0 for all i ∈ {1, . . . , k}(∨k

i=1 α(li)
)
\ {0} otherwise

α

(
m∧
i=1

Ci

)
=

1 α(Ci) = 1 for all i ∈ {1, . . . ,m}
0 α(li) = 0 for some i ∈ {1, . . . ,m}
(
∧m

i=1 α(Ci)) \ {1} otherwise

Notation 4. In the case that α = {xa}, we will write ϕ|x=a for the restriction a(ϕ).
Example 12

The following is a simple example of restriction by a single variable assign-
ment. (

(x0 ∨ y1 ∨ z1) ∧ x1 ∧ (x0 ∨ z0)
)
|x=1 = (y1 ∨ z1) ∧ z0

This is a more complicated to implement in Agda because we need to work with
Either, but it follows the same pattern:

31

CAS CS 400: TT&MR SAT Solvers

r-lit : Asn -> Lit -> Either Lit Bool
r-lit [] l = left l
r-lit ((x , b) :: ls) (y , c) with x == y
... | true = right (b ==b c)
... | false = r-lit ls (y , c)

r-cls : Asn -> Cls -> Either Cls Bool
r-cls a [] = right false
r-cls a (l :: ls) with r-lit a l
... | left l = mapE (_::_ l) (r-cls a ls)
... | right true = right true
... | right false = r-cls a ls

restrict : Asn -> CNF -> Either CNF Bool
restrict a [] = right true
restrict a (c :: cs) with r-cls a c
... | left c = mapE (_::_ c) (restrict a cs)
... | right true = restrict a cs
... | right false = right false

restrict1 : Lit -> CNF -> Either CNF Bool
restrict1 l f = restrict (l :: []) f

5.2 DPLL

With restriction, DPLL is simple to implement. It’s based on the following
observation:

For any variable x, the formula ϕ is satisfiable if and only if it is
satisfiable by a valuation v such that v(x) = 1 or by a valuation v
such that v(x) = 0.

Or, in the language of restrictions:

ϕ is satisfiable if and only if ϕ|x=0 is satisfiable or ϕ|x=1 is satisfiable.

As a warm-up, let’s write a naive version of DPLL.
{-# TERMINATING #-}
naive-dpll : CNF -> Bool
naive-dpll f = naive-dpll' (left f) where mutual

naive-dpll' : Either CNF Bool -> Bool
naive-dpll' (right b) = b

32

CAS CS 400: TT&MR SAT Solvers

naive-dpll' (left f) = go f

go : CNF -> Bool
go [] = true
go ([] :: _) = false
go (((x , b) :: ls) :: cs)

with naive-dpll' (restrict1 (x , b) cs)
go (((x , b) :: ls) :: cs)

| true = true
go (((x , b) :: ls) :: cs)

| false = naive-dpll' (restrict1 (x , notb b) cs)

The function naive-dpll' is a version of naive-dpll which applies to some-
thing of type Either CNF Bool, the output type of restrict1. Besides this,
the go function exactly implements the logic described above: we pattern match
on our input CNF until we find a variable to branch on, and then we branch
on it. If the input formula is empty, then we’ve satisfied every clause, and so the
formula is satisfiable. If there is an empty clause, then the current assignment is
said to have found a conflict, and we have to backtrack.

Remark 7. Note the use of the terminating pragma. It’s clear to us that this algorithm
terminates because restriction can only make a formula smaller. But it is not clear to
Agda since the new formula is not structurally smaller. This hearkens back to our
discussion of the difference between ordinary and induction in Remark 1.

One role of contemporary SAT-solver research is to improve this simple
algorithm. There are two heuristics which have historically been associated with
DPLL.

• Unit Propagation. If a clause with a single literal xa appears in ϕ, then we
can immediately branch on x, and we don’t have to check ϕ|x=1−a..

• Pure Literal Elimination. if a literal xa appears in ϕ but x1−a does not, then
we can immediately branch on x and we don’t to check ϕ|x=1−a.

We now present an implementation of DPLL in Agda with unit propagation,
and we leave it as an exercise to add pure literal elimination to the implementa-
tion.
has-unit : CNF -> Maybe Lit
has-unit [] = Nothing
has-unit ((l :: []) :: cs) = Just l
has-unit (_ :: cs) = has-unit cs

33

CAS CS 400: TT&MR SAT Solvers

{-# TERMINATING #-}
dpll : CNF -> Bool
dpll f = dpll' (left f) where mutual

dpll' : Either CNF Bool -> Bool
dpll' (right b) = b
dpll' (left f) = go f

go : CNF -> Bool
go [] = true
go ([] :: _) = false
go (((x , b) :: ls) :: cs)

with has-unit (((x , b) :: ls) :: cs)
go (((x , b) :: ls) :: cs)

| Just l = dpll' (restrict1 l (((x , b) :: ls) :: cs))
go (((x , b) :: ls) :: cs)

| Nothing
with dpll' (restrict1 (x , b) cs)

go (((x , b) :: ls) :: cs)
| Nothing
| true = true

go (((x , b) :: ls) :: cs)
| Nothing
| false = dpll' (restrict1 (x , notb b) (ls :: cs))

And that’s it, that’s DPLL (it’s sometimes surprising that this algorithm is still
relevant today). A couple last remarks.

• One detail we are eliding quite heavily is the choice of variable to branch
on, in the case there are no unit clauses or pure literals. We’ve use a trivial
heuristic above (i.e., we branch on the first variable we see) but the choice
of branching variable can be incredibly important.

• To say that many contemporary SAT solvers are based on DPLL is true,
but it is a heuristic built on top of DPLL called conflict-driven clause learning
(CDCL) that has made contemporary solvers so successful. This heuristic
“learns” new clauses when there is a conflict (i.e., when there is an empty
clause in the restriction of the input formula under the current assignment)
in that it adds a new (hopefully small) clause to the original formula that
the solver can use to guide its future exploration of the search-space of
possible assignments.

See ?? for more details about both of these ideas.

34

CAS CS 400: TT&MR SAT Solvers

5.3 CNF Encoding

We shift our focus now to the use of SAT solvers. First, we need to be able to
encode computational problems as CNF formulas. This turns out to be tricky
(and something which SMT solvers, discussed later, are meant to address) as
CNF formulas are not as convenient for expressibility as they are for computa-
tion.

In the previous chapter we proved that every propositional formula is logi-
cally equivalent to a CNF formula. The issue is that the procedure we used to
prove this may create very large CNF formulas, potentially exponential in the
size of the original formula (where size is measure by the number of connec-
tives). This leaves two questions: What formulas can be represented by small CNF
formulas? And what do we do when a formula cannot be represented by a small CNF
formula?

We will primarily focus on the first question. The second question is solved
in part by Gregory Tseitin.
Theorem 5 (Tseitin)

There is an equisatisfying transformation T : Prop → Prop such that, for any
propositional formula ϕ, the formula T (ϕ) is a CNF formula whose size is poly-
nomial in the size of ϕ.

Since we’re interested in formulas up to satisfiability, it suffices to consider a
CNF formula which is equisatisfiable. For this transformation (typically called
the Tseitin transformation) it is also possible to derive a satisfying assignment for
the original formula from a satisfying assignment of the transformed formula.
Remark 8. That the transformed formula is a “small” CNF formula does not imply
it is easy to solve. And there may be “better” CNF encodings depending on domain
specific considerations. But it does mean there won’t be a bottleneck at encoding.

Having a general transformation like the one above can be very useful, but
there are fundamental propositional statements which we can encode directly.
We’ll consider just the statements that will be necessary for the example in the
subsequent section.

• one≥(l1, . . . , lk) stands for “at least one of the literals l1, . . . , lk is true”. This
is an easy one to represent as CNF, its disjunction:

one≥(l1, . . . , lk) ≜ l1 ∨ . . . lk

35

CAS CS 400: TT&MR SAT Solvers

• one≤(l1, . . . , lk) stands for “at most one of the literals l1, . . . , lk is true”. This
one is not as easy, but we can rephrase the above statement as: “it is not
possible for two distinct literals li and lj to be true”. Using De Morgan’s
law, we can write this as a CNF formula:

one≤(l1, . . . , lk) ≜
∧

1≤i<j≤k

¬(li ∧ lj) ≡
∧

1≤i<j≤k

¬li ∨ ¬lj

• one(l1, . . . , lk) stands for “exactly one of the literals l1, . . . , lk is true”. With
the above two CNF encodings, this one is easy:

one(l1, . . . , lk) ≜ one≤(l1, . . . , lk) ∧ one≥(l1, . . . , lk)

There are a number of CNF encodings used in practice, and part of the “art” of
using SAT solvers is writing good encodings for the given application.

We make one final observation for this section: the formula one≥(l1, . . . , lk)
introduces a quadratic number of clauses, whichmay be intractable for very large
k. Using a trick similar to the one used by Tseitin in the proof of Theorem 5,
we can get that down to a linear number of clauses.
Fact 9

The CNF formula one≥(l1, . . . , lk) is equisatisfiable with

one≥(l1, z1)
∧ one≥(¬z1, l2, z2)
∧ . . .
∧ one≥(¬zk−2, lk−1, zk−1)

∧ one≥(¬zk−1, lk)

were z1, . . . , zk−1 are new variables.

It’s not important that you immediately grok this fact, this is just to say that the
quadractic size blow-up is not inherent (this trick can also be used to give a linear
size (equisatisfiable) encoding of l1⊕· · ·⊕lk, which would require exponentially
many clauses otherwise).

36

CAS CS 400: TT&MR SAT Solvers

5.4 Example: Sudoku

To demonstrate the use of SAT solvers, we will use a Python interface called
PySAT. This is so we can side-step concerns about how to invoke different
solvers, read their outputs, format their inputs, etc. With PySAT, we have just
a handful of methods we need to get started.

• pysat.solvers.Solver is the class forworkingwith SAT solvers. Solver()
instantiates a new solver.

• Given a solver s, the method s.add_clause(c) adds a clause to the CNF
formula that will be solved by s. Clauses are represented as lists of nonzero
integers, where positive and negative literals are represented as positive
and negative numbers, respectively.

• The method s.append_formula(f) adds a collection of clauses to the un-
derlying formula. The formula f is given as a list of clauses.

• The method s.solve() determines the satisfiability of the formula rep-
resented by the clauses added to s. It returns True if it is satisfiable and
False otherwise.

• The method s.get_model() can be called after s.solve() to get a satis-
fying assignment (represented as a list of nonnegative integers) if the list
is satisfiable. It returns None otherwise.

The following is a simple example based on one in the PySAT documentation:
from pysat.solvers import Solver

s = Solver()
s.add_clause([-1, 2])
s.add_clause([-2, 3])
print(s.solve())
print(s.get_model())

prints:
True
[-1, -2, -3]

The formula given to the solver in this example may be written as

(¬x1 ∨ x2) ∧ (¬x2 ∨ x3)

37

https://pysathq.github.io

CAS CS 400: TT&MR SAT Solvers

and the satisfying assignment returned by the solver is {¬x1,¬x2,¬x3}.
We now consider a classic exercise in the application of SAT solvers: build-

ing a Sudoku solver. The assiduous reader may wish to attempt this before
reading what follows.

(Pause for effect...)

38

CAS CS 400: TT&MR SAT Solvers

Figure 5.1: Example of a Sudoku puzzle

If you haven’t had a chance to solve a Sudoku puzzle, it is a puzzle in which
the goal is to fill a 9 × 9 grid with digits from 1 to 9, subject to the following
restrictions:

• Each row must contain exactly one of the digits from 1 to 9.

• Each column must contain exactly one of the digits from 1 to 9.

• Each 3×3 box outlined by dark lines (see Figure 5.1) must contain exactly
one of the digits from 1 to 9.

What makes the puzzle interesting is that some numbers have already been filled
in, and your solution must be consistent with them.2

In order to represent this puzzle as a CNF formula we first have to determine
the underlying variables. Since propositional formulas can only be true or false,
we cannot have variables which represent the value at every position, be we can
have a variable for whether or not a position has a certain value:

xi,j,k stands for “position (i, j) has the value k”

But we must enforce that every position has exactly one value:

valid ≜
9∧

i=1

9∧
j=1

one(xi,j,1, . . . , xi,j,9)

We then need to express that our rows, columns, and boxes have exactly one
digit from 1 to 9. I will only present the formulas for rows and columns, the

2It is also generally accepted that a Sudoku puzzle has exactly one solution, but won’t make
use of this assumption.

39

CAS CS 400: TT&MR SAT Solvers

formula for boxes (denoted by boxes below) is more complicated to write down,
though conceptually very similar.

rows ≜
9∧

i=1

9∧
k=1

one(xi,1,k, . . . , xi,9,k)

columns ≜
9∧

j=1

9∧
k=1

one(x1,j,k, . . . , x9,j,k)

We can combine the formulas discussed so far into a single formula which ex-
presses the conditions of a Sudoku puzzle:

sudoku ≜ valid ∧ rows ∧ columns ∧ boxes

We can finally include clauses which express that some positions have already
filled in. Let B be a partial function from positions to digits from 1 to 9 where
B(i, j) = k if k is filled in at the start of the puzzle at position (i, j). For example
B(3, 2) = 9 for the puzzle in Figure 5.1. We define the CNF formula which is
a conjunction of unit clauses, one for each position already filled:

board(B) ≜
∧

(i,j,k) s.t B(i,j)=k

xi,j,k

If we add this to our sudoku formula, it will kick off some unit-propagations,
which will simplify the formula and enforce the values at the given positions.
Fact 10

If sudoku ∧ board(B) has a satisfying assignment, then it is possible to derive a
solution to the Sudoku puzzle represented by B.

See the course repository for a full solution. Besides the code for pretty-printing
and converting a satisfying assignment into a solution to the given Sudoku puz-
zle, its just 20 or so lines of code. And we didn’t do anything algorithmic, that
was done by the SAT solver. We just had to express what (not how) we wanted
the SAT solver to solve.

40

CAS CS 400: TT&MR SAT Solvers

5.5 Further Reading

Fill in this section.

41

CAS CS 400: Type Theory and Mechanized Reasoning

6 Propositional Proofs

42

CAS CS 400: Type Theory and Mechanized Reasoning

7 Theories and Models

43

CAS CS 400: Type Theory and Mechanized Reasoning

8 The Lambda Calculus

44

	Introduction
	Induction and Recursion
	Induction on Natural Numbers
	Strong Induction over Natural Numbers
	Induction on Inductively-defined Collections
	Further Reading

	A Brief Tour of Agda
	Classical Propositional Logic
	Syntax
	Semantics
	Meta-Theory
	Functional Completeness
	Conjunctive Normal Form
	Further Reading

	SAT Solvers
	Restriction
	DPLL
	CNF Encoding
	Example: Sudoku
	Further Reading

	Propositional Proofs
	Theories and Models
	The Lambda Calculus

