Concepts of Programming Languages
DRAFT

Boston University

September 17, 2025

Contents

(I__Introduction| 2
[1.1 The Interpretation Pipeline|. o oo 2
[2 Inference Systems| 5
21 TInferenceRules| 6
22 Derivations|. 8
[2.3 Extended Example: Calculator] 10
[A"Trees| 16
A1 Structural Induction] e e 18
[A.2 Induction on Derivations|. L 20

Chapter 1
Introduction

When we write a program in our favorite programming language, we fill a file with a collection of
symbols that we typed up using a computer keyboard. This is one of the beauties of programming;:
looking past the bells and whistles provided by editors and programming tools, a program is just a
stream of characters. At some point in our programming workflow, we need to verify that what we've
typed up works as expected, so we run our program. In some editors, there is literally a “play” button,
but in many other cases this means opening a terminal and typing out a few commands. In either case,
we’re running a different program in order to run the program we’ve written. Our goal is to understand
what’s going on here: What is this program doing? How does it do it? What sorts of data structures does this
program use? Our intuition should tell us this program is probably doing something fairly complicatedﬂ
So our basic question is: How do we get from a stream of symbols representing a program to its output?

1.1 The Interpretation Pipeline

The program to which we referred in the previous paragraph—the one that runs the programs we
write—is called an interpreter. An interpreter takes as input a stream of characters, along with addi-
tional inputs (perhaps given as command line arguments or environment variables) and produces the
output of our program. So another way of phrasing our basic question is simply: what does an interpreter
do? As is typically the case, it’s easier to answer a question like this by breaking it up into several sub-
questions. These subquestions correspond to passes in the interpretation pipeline, which is visualized in
Figure As we will understand it, an interpreter does four things:

1. It attempts to convert a sequence of characters (our program) into a sequence of tokens. We can
think of tokens as the units or atoms of our program. This part of the interpreter is called lexical
analysis, and its primary purpose is to simplify the process of analyzing the input program. It’s
easier, for example, to analyze a program if we know beforehand whether the character 1 which
appears in our program is part of a number, a variable name, or a comment. Lexical analysis
handles all these low-level syntactic concerns up front. In analogy with natural language, this is
like the part of language processing in which your brain combines sequences of sounds or letters
into whole words.

2. Once we have a sequence of tokens, our interpreter will attempt to convert them into an abstract
syntax tree (AST), which is a representation of our program as hierarchical data. This part of the

Hust think of how hard it is to follow directions, and how often we wish we read all the instructions before starting some task.

CHAPTER 1. INTRODUCTION CAS CS 320

interpreter is called syntactic analysis or parsing. Hierarchical data is easier to analyze and eval-
uate, e.g., we’'d like to know before evaluating our program if a variable x that might appear in
our program is part of the expression we're evaluating or part of a new variable declaration. In
analogy with natural language, this is like when your brain combines words into sub-phrases like
prepositional phrases and verb phrases.

3. Not all programs we can write make sense. It doesn’t make sense, for example, to add a number
to a stringE] The next part of an interpreter should analyze the hierarchical data from the previ-
ous part to verify that everything in it “looks reasonable.” There are a couple ways to do this;
this is generally a part of what is called static (semantic) analysis, but one of the most common
form—and the way on which we'll focus because it’s OCaml’s approach—is type checking. Types
help us describe what kind of things we’re working with before we start running our program. They
help us determine before we start running our program if we’re working with data correctly. In anal-
ogy with natural language, this is like the uneasy feeling you get when you hear or see the sentence
“the happiness is cold.” The word “happiness” is not the right category of word for its location in
the sentence, despite the fact that this sentence is grammatically correct. Not all languages have
type checkers, but we maintain that “good” languages have type checkers.

4. Everything above is in service of running our program. This part of the interpreter is called dy-
namic (semantic) analysis or evaluation. This is the most intuitive part of an interpreter for pro-
grammers; learning to program is ultimately internalizing the evaluation rules of a programming
language, so that we know what to write to accomplish a certain task.

This can be seen as our roadmap; we will consider each of these of parts in turn. For each part, there will
be two perspectives: the theoretical perspective and the practical perspective. For example, the formal
counterpart of syntactic analysis is formal grammar and the practical counterpart is parsing. We will
build simple interpreters along the way, and by the end of the text we'll (hopefully) have an appreciation
for the kinds of considerations that go into designing “good” programming languages.

Remark 1.1.1. It should be noted at the point that we will not consider compilation. In rough terms,
compilation is the process of translating a program into another program in some target language,
often a language that deals with low-level concerns like memory management and hardware archi-
tecture (e.g., assembly language or LLVM). We will always consider high-level semantics for our pro-
gramming languages. And when we implement interpreters, we will work in high-level abstractions
using OCaml.

2Even though some languages allow you to do this.

CHAPTER 1. INTRODUCTION

CAS CS 320

stream of characters _‘{

Lexical Analysis]

stream of tokens

[Syntactic Analysis (Parsing)]

abstract syntax tree (AST)

[Semantic Analysis (Type

Checking)]

well-typed AST/intermediate repr. (IR)

input —*{ Evaluation

(.

}

— output

INTERPRETER |

Figure 1.1: Visualization of the interpretation pipeline

Chapter 2

Inference Systems

The study of programming languages can be understood in part as the study of a collection of inference
systemsﬂ A programming language—in the sense of the techology that we use when we program—is
just an implementation of this collection of inference systems.

Let’s begin with a picture. As we said in Chapter I} when we program we type a bunch of symbols
into a file. Of the sequences of symbols we can type, only a handful of them are valid sequences of tokens
of the language in which we’re programming. For example, let is a keyword of OCaml, 1.223 is a
floating point literal, % is an operator, and yasn3__is a valid variable name. These are all valid tokens
in OCaml. Furthermore, OCaml requires that sequences of tokens are separated by whitespace, so any
whitespace-separated combination of these is a valid sequence of tokens. But ,,A,, is a meaningless
sequences of symbols from OCaml'’s perspective, and cannot appear in a valid sequence of tokens.

Of the possible sequences of tokens, only a handful of those constitute well-formed programs. For
example, let f x = x + 2is a valid OCaml program, whereas let f rec = =is not, though both are
valid sequences of tokens.

Of the well-formed programs, only a handful make sense as programs; said another way, only a
handful are well-typed programs. For example, let rec £ x = £ xis well-typed, whereas let rec f x
= f + xis not, though both are well-formed programs.

And, of the well-typed programs, only a handful of those make sense as computations; said another
way, only a handful can be successfully evaluated. This can be visualized as a nested collection of sets
(Figure 2.T). Note that things get a bit interesting in the relationship between well-typed programs and
programs that have values. We'll take this up in-depth when we cover type systems in ??.

Our goal is to transform a sequence of symbols which make up our program into the value of our
program. This is done by successive passes/transformations, each of which corresponds roughly to one
of these nested sets:

> determining valid sequences of tokens in part of lexical analysis;
> determining well-formed programs is part of parsing or syntactic analysis;
> determining well-typed programs is part of type-checking or static semantic analysis;

> determining the value of a program is part of evaluation or dynamic semantic analysis.

In some settings, these are called formal systems or deductive systems, though it's my sense that there’s no real consensus as
to what exactly these terms mean.

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

let rec f x = x>0 || f x in f 1
let f x = x + "two" in 2

let fxy=1+x+yinf 2 (-3)

programs with values

let rec f x =x >0 || £f x in £ O 2 + "two"

well-typed programs |

letfxy=1+xx+fyinf2 (-3 wellformed programs
J

rec let x 2 let f x + +y = f sequences of tokens

twe) ((33%# NQE--’:://Uion aP0|? sequences of symbols
L J

Figure 2.1: Visualization of nested classes of programs. In order to make the graphic simpler, the
code examples are actually OCaml expressions, not programs.

And at each pass, there’s an inference system that formally describes which inputs are “good” and which
are “garbage.”

In this chapter we will:

> formally define inference rules, i.e, the rules which govern when we can derive new judgments
from judgements we’ve already derived within an inference system;

> use derivations to demonstrate that a judgment is derivable in an inference system;

> go through an extended example in which we define a collection of inference systems that define
the syntax, typing behavior, and evaluation behavior of a simple calculator.
2.1 Inference Rules

An inference system is determined by a collection of inference rules. These inference rules describe
what new information we’re allowed to infer given previously inferred information. Inference rules will
generally have the following form.

m is even n=m-++2

- (addTwo)
n is even

In rough terms, this inference rule expresses that we can infer that a number # is even if we already
know that n — 2 is even (i.e., if n = m + 2 and m is even). We begin by looking at the general anatomy
of inference rules.

An inference system is defined over a fixed class of judgments. We think of the judgments as the
things we can say while inferring something. Mathematically speaking, judgments can be anything we

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

want, elements of an arbitrary set. Practically speaking, we’ll always take judgments to be statements
parametrized by some other set.

Example 2.1.1. If we're interested in the parity of natural numbers, we may take J, our set of judg-
ments, to be all statements of the form

niseven or n is odd
So “7 is even” and “111 is odd” are both judgments in 7.

We'll call something like “n is even” a parameterized judgment and something like “4 is even” a con-
crete judgment, or just a judgment if it’s clear from context that it’s concrete. In particular, we’ll say
“110 is odd” is an instance of the parameterized judgment “n is odd.”

Remark 2.1.1. We'll genearlly be a cavalier about this distinction between parametrized and concrete
judgments. For example, we’ll say that concrete judgments are also parameterized judgments, insofar
as they’re parametrized by no parameters. Likewise, we’ll say that a parameterized judgment is in a
set J when we really mean that its instances are in J.

An inference rule is a way of describing what judgments we’re allowed to infer given we’ve already
inferred some other judgments. They also often include addition statements that need to hold in order
for a rule to be applied; these are called side conditionsE] The following is the general definition of an
inference rule. It’s important that we understand this definition, but not on our first pass; make sure to
lean on the intuitions we’ve been trying to develop here as you work through this chapter, and come
back to this definition potentially several times.

Definition 2.1.1. An inference rule named (ruleName) is a nonempty sequence of parameterized
judgments [y, ... Jx, Jx+1 along with a collection of statements Sy,...,S; on the parameters used in
those judgments. An inference rule is denoted by

oo Tk S

J (ruleName)
Jie+1

We say that a concrete judgment J; , ; follows from the concrete judgments Jj, ..., J; by (ruleName)
if J/ is an instance of J; for each index i and all statements Sy, ..., S; hold for the parameters used in
the given judgments. We’ll often also denote this by

B e

k (ruleName)

/
Je

and say that this is an instance of the rule (ruleName). We'll also call this simply an inference.

2In what follows we’ll highlight side conditions to make clear that they are not formal judgments.

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

Example 2.1.2. The inference

10 is even (addTwo)
12 is even

is an instance of the rule (addTwo) above. In particular, the side condition 12 = 10 + 2 holds. Note
that the side condition is not included in the instance, it’s checked “offline” so to speak. Also note
that

11 %s even (addTwo)
13 is even

is an instance of the rule (addTwo). It expresses that, hypothetically, if 11 is even, then it’s reasonable
to infer that 13 is even as well.

We call the judgments “above the line” antecedences and the judgment below called the consequent.
It should be recognized that an inference rule may have no side-condition or no antecedents, it could
even neither. An inference rule with no antecedents is called an axiom. As we'll see, an inference system
can’t be very interesting if it doesn’t have any axioms; without them, nothing can be unconditionally
inferred.q

2.2 Derivations

At this point, we can give a basic definition of an inference system.

Definition 2.2.1. An inference system over a set of judgment J is a collection of inference rules over

J.

Example 2.2.1. Let J be as in Example We can consider the inference system given by the
following two inference rules (note that these rules do not say anything about odd numbers).

— (zero) m is even n=m-+2
0 is even

- (addTwo)
nis even

What we're interested in with regards to inference systems is the collection of judgments that are possible
to infer, i.e., the closure of the inference rules given in the system. We make this more concrete with the
notion of a derivation, which is used to demonstrate that it’s possible to infer a given judgment within
an inference system by repeated invocations of its inference rules.

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

Definition 2.2.2. A derivation of the judgment | in an inference system 7 is a tree T with the following
properties:

> The values of T are judgments from J;
> root (T) is J;

> For every node of T of the form node(K, Ty, ..., Ty)

root (Ty) .. root (Tj)

is an instance an inference rule in 7.

In particular, the leaves of T are instances of axioms in Z.

It’s in this definition that we see why we need axioms: without them, our derivations can’t start any-
where. Figure 2.2| has a derivation of the judgment “8 is even” in the inference system from Exam-
ple It’s not a terribly interesting derivation, but it captures the form of reasoning we’re allowed to
do in this system: 8 is even because 6 is even, which holds because 4 is even, which holds because 2 is
even, which holds because 0 is even, which holds by definition.

Remark 2.2.1. Even though derivations are trees, we present them bottom-up as stacks of inferences.
This is, in part, because it captures the structure of a proof more naturally, but it’s also just historical.
Gerhard Gentzen established much of the notation we use here (and in the mathematical field called
proof theory) in the 1930s [1].

Let’s consider a slightly more interesting inference system.

Example 2.2.2. We can define an alternative system which takes advantage of our ability to reason
about odd numbers.

0 is even (zero) 1is odd (one)
m is even n=m+1 .
n is odd (odd)

m is odd n is odd k=m+n

; (even)
k is even

Figure [2.3|is a derivation of “8 is even” is this alternative system. The primary takeaway: different
inference systems provide us with different forms of reasoning. In this alternative system, we have to
first separate 8 into two summands and reason about them separately. This system also differs from the
one in Example 2.2.1|because a judgment may have multiple proofs.

Exercise 2.2.1. Give another derivation of “8 is even” in this system from Example

Exercise 2.2.2. (Challenge) Prove that “n is even” is derivable in the system from Example if and
only if it’s derivable in the system from Example

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

——— (zero)

Diseven . 44Two)

2iseven . 44Two)

Aiseven . 4qTio)

_biseven %s even (addTwo)
8 is even

Figure 2.2: A derivation of “8 is even” in the inference system from Example

1is odd (one) 1is odd (one)
2 is even (0dd) (even) (one) (one)
3is odd © 1is odd (One 1is odd (one) 1is odd one
- even) - (even)
4 is even (0dd) 2 is even (0dd)
5is odd 3is odd
- (even)
8 is even

Figure 2.3: Derivation of “8 is even” in the inference system from Example

2.3 Extended Example: Calculator

We now consider several inference systems defined over judgments about expressions for a calculator
with lisp-like syntax. Anticipating the next chapter, the formal syntax for such expressions is give in
Figure This syntax allows for only 8 possible symbols: (,), +, x, =, 7, 0, and 1. It is not expected at
this point that you understand this specification; it’s just meant to give a hint of what is to come.

We begin by defining an inference system that determines which sequences of symbols constitute
well-formed expressions (Figure 2.5). This system is defined over judgments of the form “e € WF”
where e is a sequence of symbols. It captures in its inference rules that operators appear before their
arguments, and that all invocations of an operator are surrounded in parentheses. For example, (* (+
1 1) (+ 1 1)) is a well-formed expression, and we can derive this judgment formally (Figure [2.6).

<expr> = (+ <expr> <expr>)

(* <expr> <expr>)

|

| (= <expr> <expr>)

| (7 <expr> <expr> <expr>)
|

01

Figure 2.4: Lisp-like syntax for a simple calculator

10

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

(zero) (one)

0 € WF 1€ WF

e1 € WF er € WF (add) e1 € WF er € WF
(+81€2)€WF (*8162)€WF

(mul)

e1 € WF er € WF
(=€1€2)€WF

(eq)

e1 € WF ep € WF e3 €W

F
d
(7e1epe3) € WF (cond)

Figure 2.5: Inference systems for well-formed expressions in the language from Figure

(one)

(add)

(one) (one)

(add)

(one)

1€ WF 1€ WF 1€ WF 1€ WF
(+11) e WF (+1 1) e WF (mul)
(* (+11) (+1 1)) eWF

Figure 2.6: Derivation of “(* (+ 1 1) (+ 1 1)) € WF” in the system from Figure[2.5

Remark 2.3.1. Keep in mind that these expressions don’t mean anything yet, even though we can
guess that “+” will stand for addition and “*” will stand for multiplication. So, for example (+ (= 1
1) (= 0 1)) is also a well-formed expression, even though this may not make sense if we interpret

“u__rr

as an equality operator which evalutes to a Boolean value.

Once we've defined the well-formed expressions using an inference system, we can prove things about
well-formed expressions using induction on derivations (see Appendix [A).

Exercise 2.3.1. Prove using induction on derivations that if e € WF, then the parentheses in ¢ are
balanced.

In addition to proving things via structural induction, we can also define properties on well-formed
expressions by defining new inference systems. In particular, we can use the notion of a well-formed
expression in other inference systems.

Suppose, for example, we want to reason about how many symbols are in a given well-formed
expression. We can define an inference system to do this sort of reasoning (Figure 2.7). This system is
defined over judgments of the form “#(e) = n” where e ranges over well-formed expressions (i.e., we
can derive “e € WF” in the previously defined inference system) and # ranges over natural numbers.
The rules in this system express that 0 and 1 have 1 symbol, and every other expression has 3 plus [the
number of symbols in its subexpressions] many symbols. We can derive within this system that (* (+
1 1) (+ 1 1)) has 13 symbols (Figure[2.8).

At this point, we’d like to start thinking about the meaning of these expressions. First, we must
contend with the fact that not all well-formed expressions are meaningful. For example (= (= 0 0) 1)
doesn’t make much sense because it would require us to compare two values that aren’t the “same kind

11

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

7#(0) — (zero) 7#(1) — (one)
#(er) =m #(ep) =n k=m+n+3 (add)
#((+e1e)) =k
#(ep) =m #(ep) =n k=m+n+3
(mul)

#((xerep)) =k

#(e) =m #(ex) =n k=m+n+3
#((=e1ex)) =k

(eq)

#ler) =1 #lep)=m #e)=n k=Il+m+n+3
#((7ererez)) =k

(add)

Figure 2.7: Inference system for determining the number of symbols in a well-formed expression

#(1)7:1 (One) W Eoze) #(1)7:1 (One) #(1)7:1 (One)
add) (add)
#((+ 1 1))=5 #(+11)=5
#(x (+11) (+11))=13

(mul)

Figure 2.8: Derivation of “#((* (+ 1 1) (+ 1 1))) = 13” in the system from Figure[2.7]

12

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

0 int e T int ©OT€)

e1 :int ey . int e1 : int ey : int

dd
(+e1e):int (add) (*e1e) :int

(mul)

e1:h ety =1t €1 : bool ety e3: i3 th =t

(=ejep) :bool (eq) (7e1epez) : ty

- (cond)

Figure 2.9: Inference system for determining the type of an expression

of thing.” Formally, the “kind of thing” a value can be is called its type. There are two types of values
that an expression can be in our toy calculator language: a number (int) or a Boolean value (bool).

Remark 2.3.2. It would be possible to represent Boolean values as numbers; this is done, for example,
in C. Then there would be a single type of value in our toy lanugage. We'll avoid doing this, in part
because it makes our example less interesting, but also because there are some serious problems that
arise when we design programming languages this way.

We can define an inference system which determines the type of an expression, if it has one. This means
that the system has two purposes: (1) it delineates which expressions have values (i.e., which we can
evaluate), and (2) it determine the type of the value before we've evaluated the expression (Figure[2.9).

This system is defined over judgments of the form “e : ” where ¢ is a well-formed expression and ¢
is either int or bool. Let’s take a brief moment to read what each of these rules says.

> (zero) says O is a int, no matter what.
> (one) says 1 is a int, no matter what.

> (add) says if e is a int (i.e., evaluates to a number) and e, is a int, then (+¢e; ey) is a int. In
particular, we can only add numbers, not Boolean values.

> (mul) says if e is a int (i.e., evaluates to a number) and ¢; is a int, then (* ¢ ey) is a int. In
particular, we can only multiply numbers, not Boolean values.

> (eq) says if e; and e; are the same type then we can compare them, and (=¢; e) is a bool. In
particular, we can’t compare a number with a Boolean value.

> (cond) says if eg is a bool, and e, and e3 are the same type, then we can condition on the value of
e1 to get either the value of e; or e3, and the type of (7 e1 e e3) is the same as that of e; and e3.

See Figure for an example derivation in this system.

Remark 2.3.3. Notice that, ultimately, an inference rule, is a more compact way of expressing a state-
ment in (mathematical) English. It takes some practice to read inference rules, but it is worthwhile to
learn in the long run, and eventually becomes easier than reading the equivalent English.

Finally, we can define an inference system for determining the value of an expression in our toy calcu-
lator language (Figure 2.T1). This system is defined over judgments of the form “e |} v”, which we read
as “e evaluates to v,” where e ranges over well-formed expressions, and v ranges over numbers (IN) or
Boolean values ({ T, L}). Let’s again take a moment to read what each of these rules says.

13

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320
T ant 0" Toagp ©OM®) g 00 gy (one) e (one) e (zero)
- (add) - (mul)
(=1 1):bool (+1 1) :1int (* 1 0):int
(cond)

(?7(=11) (+11) (*x10)):int

Figure 2.10: Derivation of “(? (= 1 1) (+ 1 1) (* 1 0)) : int” in the system from Figure[2.9]

000 (zero) m (one)
er o e v v=v1+0 e1 o e v V=101 X0
140 2 v 1+ 02 (add) 1401 2 v 1 X0 ()
(+e1e) o (*xe1ep) o
er o1 ex |} v U =10 (eqTrue) e v ex 0o U1 #£ V2 (eqFalse)
(=e1e2) § T a (=ere2) | L b
all alo i all alv pie

(7e1ee3) 0

(7e1epe3) Yo

Figure 2.11: Inference system for determine the values of well-formed expressions

> (zero) says O evaluates to the number 0.
> (one) says 1 evaluates to the number 1.
> (add) says if 1 evaluates to m and e, evaluates to 1, then (+ej ep) evaluates to m + n.
> (mul) says if e; evaluates to m and e, evaluates to n, then (x e1 ey) evaluates to m x n.

> (eqTrue) says if e; evaluates to v; and e, evaluates to vp, and v; and v, are the same then (=e¢; e)
evaluates to true.

> (eqFalse) says if e¢; evaluates to v; and ep evaluates to v, and v and v, are not the same then
(=e7 ey) evaluates to false.

> (ifTrue) says if e; evaluates to true and ep evaluates to v, then (7 e e; e3) evaluates to v. In
particular, e3 does not need to be evaluated.

> (ifFalse) says if e; evaluates to true and e; evaluates to v, then (7 ej ey e3) evaluates to v. In
particular, e, does not need to be evaluated.

See Figure for an example derivation in this system. Notice that the side conditions are where the
“real” computation happens, e.g., the (add) rule draws a correspondence between the + operator in our
language and normal addition “+” in the side condition.

There is quite a bit more we could say about this example, but we’ll leave it for now. The purpose of
this presentation is primarily to offer examples of inferences systems like the ones on which we’ll focus
for the remainder of the text. We defer more careful considerations to those later chapters.

14

CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

731 O Tt E";‘j 731 O TyT <°;‘Z)
+112 add) Ging2 dd
(mul)

(x (+11) (+11))]4

Figure 2.12: Derivation of “(* (+ 1 1) (+ 1 1)) | 4” in the system from Figure

15

Appendix A

Trees

Trees—or, more generally inductively-defined structures—are core to the study of programming lan-
guages. This is, in part, why functional programming languages like OCaml are well-suited for imple-
menting programming languages. As such, we have to spend some time on the humble notion of trees.
This appendix covers a small slice of the topic, only what we need for the main part of the text

If you've taken a course in discrete mathematics, you've likely seen the graph-theoretic definition of
trees.

Definition A.0.1. A tree is undirected graph which is connected and acyclic. A directed tree is a
directed graph whose underlying graph is a tree. A directed tree is rooted if there is a unique vertex
with in-degree 0.

We'll be primarily interested in nonempty rooted directed treesE] These are also sometimes called rose
trees. To make this more explicit we’ll work with the inductive definition of (rose) trees.

Definition A.0.2. A tree with values from V is defined inductively as follows:
> if v is a value from V and Ty, . .., Ty are trees then so is node(v, Ty, . . ., Ty).

Note, in particular, that node(v) a tree for any value v from V. We call this kind of tree a leaf. The
root of a tree is defined as:

root (node(v, Ty, ..., Ty)) = v
and the children a tree are defined as:

children (node(v, Ty, ..., T)) = (Ty, .- ., T¢)

I There are whole books dedicated to the study of mathematical induction and inductively defined structures.
ZMoving forward “tree” we will always mean “nonempty rooted directed tree.”

16

APPENDIX A. TREES CAS CS 320

Example A.0.1. Decision trees represent boolean functions, and we can represent a decisions tree as a
rose tree. One decision tree for the boolean function OR(x7, x3,x3) = x1 V X2 V x3 is:

node(x; = 1,node(1), node(x, = 1, node(1), node(x3 = 1, node(1), node(0))))
Values of this tree are queries to the inputs of the function. Roughly speaking, this decision tree

expresses that the value of OR(x1, x2,x3) can be determined by searching from left to right for an
input which is equal to 1.

We can naturally define rose trees in OCaml, which means we can also define the usual functions on
trees:

type 'a rose_tree = Node of 'a * 'a rose_tree list
let example = Node (1, [Node (2, []); Node (3, [1D1)

let rec depth (Node (_, ts)) =
List.fold_left

(fun acc n -> max acc (n + 1))
0

(List.map depth ts)

let rec size (Node (_, ts)) =
List.(fold_left (+) 1 (map size ts))

let _ = assert (depth example = 1)
let _ = assert (size example = 3)

We visualize trees in the usual way. Here, for example, is a visualization of the tree from Example

1/1:\ =1
1/ \:1
1/ \0

We’ll also occassionally use the following form of tree visualization, which we’ll call compact form:

17

APPENDIX A. TREES CAS CS 320

This form is based on visualizations of file treesﬂ It’s particularly useful when a tree it too wide to
draw otherwise, e.g., when the values in nodes are themselves very wide. There’s one more form of tree
visualization we’ll use for drawing derivation trees; this will be covered in Chapter 2|

A.1 Structural Induction

Induction is a principle used to prove universal statements about inductively-defined structures (like
trees). If you've taken a course in discrete mathematics, you've likely seen the principle of natural
number induction:

Given a property P of natural numbers, if:

> P holds of the number 0;

> for every number k, if we assume P holds of k (an assumption often called the induction hy-
pothesis), then we can demonstrate that P holds of k + 1;

then P holds of every natural number.

Exercise A.1.1. Prove that
n
2) i=n(n+1)
i=1
holds for all natural numbers # using natural number induction.

Inductive structures—by definition of being inductive—have analogous induction principles. Here’s
the principle of tree induction:

Given a property P of trees with values from V, if

> for any value v from V, and trees Ty, . .., Ty, if we assume that P holds of each tree Ty, . . ., T;E]
then we can demonstrate that P holds of node(v, Ty, ..., Tx);

then P holds of all trees with values from V.

31f you're interested, look up the command line tool tree, or just type tree . in your terminal and see what you get.
* Again, this assumption is called the induction hypothesis.

18

APPENDIX A. TREES CAS CS 320

We won't concern ourselves further with the general notion of treesE] We'll focus on inductively-define
subsets of trees.

Notation A.1.1. For a set A, we write A* for the set of finite sequences of elements of A and we write
AT for the subset of nonempty sequences in A*. For example, the sequence (1,2,3,4,5) is an element
of both N* and N .

Definition A.1.1. Let Q be a property on V. The inductively-defined subset of trees Q given by Q
is defined (inductively) as follows:

> for any value v from V and trees Ty, . . ., Ty from Q, if Q holds of (v, root (v1), ..., root (vy)) then
node(v, Ty, ..., T) € Q.

In other words, inductively-defined subsets of trees are defined by describing when we’re allowed to
build new trees from those we’ve already built.

Example A.1.1. Consider the inductively-defined set Q of trees with values from IN given by the
property Q which holds of (v,vy,...,v;) when v is prime or v = v;...v,. That is, the value at the
root of a given tree is prime or the product of the roots of its children. The following is an example of
such a tree.

60

/Y
2/3\2

We might recognize that the leaves of this tree define a prime factorization of the root, e.g., 60 =
5%2%3%2.

Once we have inductively-defined subsets of trees, we can define their corresponding principle of in-
duction. It’s the same as the principle of tree induction but with a slightly stronger induction hypothesis:

Given a property P of trees with values from V and a property Q which inductively-defines a subset

Q of trees, if

> for any value v from V, and trees Tq, ..., Ty from Q, if we assume that P holds of each tree
Ty, ..., T and that Q holds of the sequence (v,root (Ty1),...,root (Ty)) then we can demon-
strate that P holds of node(v, Ty, ..., Ty);

then P holds of all trees in Q.

Let’s see this in action. Consider the subset Q of trees defined in Example We’d like to prove that
for any tree T from Q, the number root (T') has a prime factorization.

S5There isn’t much more we can say without also formally defining recursion on trees, another interesting topic that we'll uncer-
emoniously brush under the rug.

19

APPENDIX A. TREES CAS CS 320

Proof. Letnode(n, Ty, ..., Ty) be a tree in Q and suppose that root (T;) has a prime factorization py ; ... py, ;
for all indices i. Furthermore we assume, by definition of Q, that n is prime or

n =root (T1)...root (Ty)

If n is prime, then # is also its prime factorization. Otherwise,

k

k
H root (T;) = [[(p1,i--- p1,)

i=1

yielding a prime factorization of n. That is, we take the product of all the prime factorizations of the
children of T to get a prime factorization of its rootE] O

A.2 Induction on Derivations

What we’ve done so far is more general than necessary, and is ultimately in service of defining the
derivation induction principle. First, observe that the set of derivations in a given inference system Z, as
defined in Chapter 2} is an inductively-define subset of trees. The property is straightforward: it holds
of the nonempty sequence of judgments (], J1, ..., Jx) when

J1 e Jk
J
is (an instance of) an inference rule of Z. In other words, a derivation is a tree in which every node is
either an axiom or follows from an inference rule. The upshot is that the derivation induction principle

is a specialization of the induction principle for inductively-defined subsets of trees.

Our second observation: being able to prove that a property holds of all derivations is enough to
be able to prove that a property holds of all derivable judgments. There’s is an obvious correspondence
between derivations and derivable judgments: if a judgment is derivable, then it has a derivation. And
this is ultimately what we care about when we reason about things like type safety (??). All said, we can
state the derivation induction principle as follows:

Given a property P of judgments of Z, if

> for any judgment | and derivable judgments |1, ..., Ji, if we assume that P holds of each judg-
ment J1,..., Jx where

N1 Jk

then we can demonstrate that P holds of J;

then P holds of all derivable judgments of D.

This principle tells us that we can look at the last inference rule applied and prove that the property
holds assuming it holds of the antecedents of the applied rule.

It may be easier to grok this principle by example. Consider the following basic inference system
over judgments of the form “n is even” where n € IN.

®What we’ve done here is only part of the fundamental theorem of arithmetic. We would also need to prove that every natural
number is the root of some tree in Q, which we can prove by (strong) induction over natural numbers (we also say nothing of
uniqueness...).

20

APPENDIX A. TREES CAS CS 320

Example A.2.1. This system is taken directly from Chapter 2}

(zero) m is even n=m-+2

0 is even (addTwo)

n is even

We’d like to prove that this inference system is sound, i.e., that if “n is even” is derivable, then 7 is, in
fact, even (in particular, “3 is even” is not derivable). We can prove this by induction on derivations.

Proof. Let | denote an arbitrary judgment “n is even.” There are two cases to consider.
> If | follows from (zero), then | must be the judgment “0 is even” in which case the property holds.

> If | follows from (addTwo), then “n — 2 is even” must be derivable and we may assume that n — 2
is even. This implies that n itself is even.

O

In a sense, this example might be too simple. It's not immediately clear that we’ve done anything
in this proof; the distinction between n being even and the judgment “n is even” being derivable is
admittedly a subtle one. But, in order to avoid ballooning this appendix into a full-blown chapter, I'll
relegate the presentation of more interesting examples to ??.

21

Bibliography

[1] Gerhard Gentzen. Investigations into Logical Deduction. American philosophical quarterly, 1(4):288—
306, 1964.

22

	Introduction
	The Interpretation Pipeline

	Inference Systems
	Inference Rules
	Derivations
	Extended Example: Calculator

	Trees
	Structural Induction
	Induction on Derivations

