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Abstract
I present an infinite-reduction-path-preserving translation of pure type systems which eliminates
rules and sorts that are in some sense irrelevant with respect to normalization. This translation can
be bootstrapped with existing results for the Barendregt-Geuvers-Klop conjecture, extending the
conjecture to a larger class of systems. Performing this bootstrapping with the results of Barthe
et al. [3] yields a new class of systems with dependent rules and non-negatable sorts for which the
conjecture holds. To my knowledge, this is the first improvement in the state of the conjecture since
the results of Roux and van Doorn [13]—which can be used for the same sort of bootstrapping
argument—albeit a somewhat modest one; in essence, the translation eliminates clutter in the
system, ruling out any unhelpful structure that does not affect normalization. This work is done in
the framework of tiered pure type systems, a straightforward simplification of stratified persistent
systems I introduce which is sufficient to study when concerned with questions about normalization.
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1 Introduction

The class of pure type systems [15, 4, 1, 2] was introduced as a natural generalization of the
lambda cube which also includes systems with more complex sort structure and product type
formation rules. The study of pure type systems is primarily concerned with how this sort
structure affects the meta-theoretic properties of the system (especially given the minimal
collection of type formers). One such meta-theoretic property is normalization: a type system
is weakly normalizing if every typable term has a normal form and strongly normalizing if no
typable term appears in an infinite reduction sequence. The well-known Barendregt-Geuvers-
Klop conjecture posits that weak normalization implies strong normalization for all pure type
systems.

Very little progress has been made on this conjecture, in part because pure type systems
in general are too unstructured to be amenable to standard techniques. Though natural, the
generalization to pure type systems from the lambda cube is in some sense the most obvious
one, a basic syntactic ambiguation of the inference rules to allow for maximal freedom where
the lambda cube imposes its sort-structural restrictions. The resulting systems may fail to
have the meta-theoretic properties one might expect (e.g., type unicity). It is, therefore,
common to consider classes of pure type systems that maintain these meta-theoretic properties.
The state of the art of the conjecture is the result of Barthe et al. [3], which states that weak
normalization implies strong normalization for generalized non-dependent, clean, negatable1

pure type systems. The proof of this result depends on a very nice—though somewhat
complicated—generalization of Sørensen’s CPS translation [14] for λω (among other systems).

1 These are technical restrictions, discussed further in the later exposition.
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23:2 An Irrelevancy-Eliminating Translation for Pure Type Systems

I have recently given a slightly simpler presentation of the same result [12] but based on Xi’s
Thunkification translation [16].

I propose revisiting the Barendregt-Geuvers-Klop conjecture in a slightly simpler frame-
work. I start by presenting a class of basic, concrete pure type systems I call tiered pure type
systems. Despite their simplicity they are sufficient to consider with regards to questions
about normalization. Stratified persistent systems (and generalized non-dependent systems)
are disjoint unions of tiered systems, so tiered systems are in some sense the atoms of these
systems. For concreteness, the conjecture restricted to this setting is that weak normalization
implies strong normalization in all tiered pure type systems. The result of Barthe et al.
implies the conjecture for non-dependent, clean, negatable tiered systems, and so it remains
to remove any and all of these restrictions.

This simple reframing of the problem (a moving of the goalposts, so to speak) is a minor
though I believe important step towards making further progress on the full version of the
conjecture. But even in this setting, there is a huge number of systems to consider, many of
which contain what amounts to "junk" structure. The primary contribution of this paper is
a translation of pure type systems which preserves typability and infinite reduction paths
(I will simply write "path-preserving" from this point forward) and removes this irrelevant
structure. By removing structure here, I mean that the target system of the translation is
the same as the source system but with some sorts and rules removed.

Consider, for example, the system λHOL, which may be thought of as the system λω with
an additional superkind sort △ that allows for the introduction of kind variables that can
appear in expressions but cannot be abstracted over. The introduction of △ is meaningful
with respect to what expressions can be derived, but unsurprisingly both λHOL and λω

are strongly normalizing. One basic observation here is that there is a single expression
inhabiting △, namely the kind sort □. This sparsity of inhabitation can be leveraged to
define a path-preserving translation from λHOL to λω and, in fact, from any pure type
system with an isolated top-sort to the same system but without the top-sort.

I generalize this basic idea in two ways. First, I define a path-preserving translation
that eliminates not just top-sorts but also any sort which is top-sort-like. Second, I extend
this translation to eliminate not just isolated sorts, but also sorts which may appear as
sources of Π-types. In particular, this allows for the elimination of some dependent rules in
the system. This translation can be iteratively applied to a system λS until a fixed point
λS↓ is reached, which is equivalent to λS with respect to strong normalization. Thus, this
translation can be used to prove the strong normalization of systems λS for which λS↓ is
known to be strongly normalizing. But perhaps more importantly, it can be bootstrapped
with existing results for the Barendregt-Geuvers-Klop conjecture. The argument is simple:
if λS is weakly normalizing, then so is λS↓ since it can be embedded in λS. Then λS↓

is strongly normalizing by assumption, and so λS is strongly normalizing by the path-
preserving translation. Bootstrapping with the result of Barthe et al. yields a proof of the
Barendregt-Geuvers-Klop conjecture for a larger class of systems.

This technique bears a resemblence to the one used by Roux and van Doorn [13] in their
structural theory of pure type systems, which in turn resembles the techniques of Geuvers
and Nederhof [6] and Harper et al. [7]. In all these works, a translation is defined from
one pure type system into another which has fewer rules. And though it is not explicitly
stated, the translation of Roux and van Doorn can be bootstrapped in the same way as
described above to push the state of the conjecture. In fact, their translation can be used to
eliminate rules between disjoint systems in order to, say, make it stratified and persistent
(i.e., a disjoint unions of tiered systems) whereas the translation presented here eliminates
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rules within the individual summands in a disjoint union of tiered systems.
It is important to emphasize that this results depends on the fact that the additional

structure that can be handled is in some sense irrelevant. But if we do want to prove the
full conjecture, we also have to prove it for a class of "junk" systems, ones which may not
be interesting in their own right and may have rules which don’t add much to the system.
In a way, this result is perhaps more meaningfully interpreted in the reverse direction: the
systems λS↓ for which the conjecture is not known to hold are targets for the developments
of better techniques. Ideally, some technique could handle all these systems uniformly, but
for now it may be useful to further develop the theory regarding what barriers exist, what
systems beyond the lambda cube, natural or not, may be most important to study.

In what follows I present some preliminary material, which includes some exposition on
tiered systems. I then define the irrelevancy-eliminating translation in two parts: one part
for eliminating rules and one for eliminating sorts. The final translation will be taken as the
composition of these two translations. Finally, I present its application to the Barendregt-
Geuvers-Klop conjecture and conclude with a short section on what it implies about the
systems which remain to be studied.

2 Preliminaries

A pure type system is specified by a triple of sets (S, A, R) satisfying A ⊂ S × S and
R ⊂ S × S × S. The elements of S, A and R are called sorts, axioms and rules, respectively.
We use s and t as a meta-variable for sorts.2

For each sort s, fix a Z+-indexed set of expression variables Vs. Let svi denote the ith
expression variable in Vs and let V denote

⋃
s∈S Vs. We use x, y, and z as meta-variables for

expression variables. The choice to annotate variables with sorts is one of convenience. The
annotations can be dropped for the systems we consider, and are selectively included in the
exposition.

The set of expressions of a pure type system with sorts S is described by the grammar

T ::= S | V | ΠVT. T | λVT. T | TT

We use M , N , P , Q, R, S, A, B, C and D as meta-variables for expressions. Free variables,
bound variables, α-congruence, β-reduction, substitution, etc. are defined as usual (see, for
example, Barendregt’s presentation [2]). Substitution of x with N in M is denoted M [N/x].

A statement is a pair of expressions, denoted M : A. The first expression is called
the subject and the second is called the predicate. A proto-context is a sequence of
statements whose subjects are expression variables. We call the statements appearing in
proto-contexts declarations. We use Γ, ∆ and Υ as meta-variables for proto-contexts.
The sequence braces of proto-contexts are often dropped and concatenation of contexts
is denoted by comma-separation. Substitution and the β-equality relation are extend to
contexts element-wise. For a proto-context Γ and statement (x : A) we write (x : A) ∈ Γ
if (x : A) appears in Γ. We define the subset relation Γ ⊂ ∆ for proto-contexts Γ and ∆
analogously. Let C denote the set of all proto-contexts.

A proto-judgment is a proto-context together with statement, denoted Γ ⊢ M : N .
The designation "judgment" is reserved for proto-judgments that are derivable according

2 For any subsequent meta-variables, we also allow positive integer subscripts and tick marks, e.g., s1, s2,
and s′. Note, however, that in later sections, si refers to a particular sort in tiered systems. I will try
to be as clear as possible when distinguishing between these two cases of notation.

CVIT 2016



23:4 An Irrelevancy-Eliminating Translation for Pure Type Systems

to the rules below. Likewise, the designation "context" is reserved for proto-contexts that
appear in some (derivable) judgment.3

▶ Definition 1. The pure type system λS specified by (S, A, R) has the following rules for
deriving judgments. In what follows, the meta-variables s and s′ range over all sorts in S
when unspecified. We say that a variable sx is fresh with respect to a context Γ if it does not
appear anywhere in Γ.

Axioms. For any axiom (s, s′) we can derive ⊢λS s : s′.
Variable Introduction. For a fresh variables sx

Γ ⊢λS A : s

Γ, sx : A ⊢λS
sx : A

Weakening. For a fresh variable sx

Γ ⊢λS M : A Γ ⊢λS B : s

Γ, sx : B ⊢λS M : A

Product Type Formation. For any rule (s, s′, s′′)
Γ ⊢λS A : s Γ, sx : A ⊢λS B : s′

Γ ⊢λS ΠsxA. B : s′′

Abstraction.
Γ, sx : A ⊢λS M : B Γ ⊢λS ΠsxA. B : s′

Γ ⊢λS λsxA. M : ΠsxA. B

Application.
Γ ⊢λS M : ΠsxA. B Γ ⊢λS N : A

Γ ⊢λS MN : B[N/sx]
Conversion. For any expressions A and B such that A =β B

Γ ⊢λS M : A Γ ⊢λS B : s

Γ ⊢λS M : B

The subscript on the turnstile is dropped when there is no fear of ambiguity. The
annotations on variables in Π-expressions and λ-expressions are non-standard, and will in
most cases be dropped, but they affect the statement of the generation lemma (Lemma 2).
It is also standard to write A → B for ΠxA. B in the case that x does not appear free in B.

An expression M is said to be derivable in λS if there is some context Γ and expression
A such that Γ ⊢λS M : A. Although there is no distinction between terms and types, it is
useful to call a judgment a type judgment if it is of the form Γ ⊢λS A : s where s ∈ S, and
a term judgment if it is of the form Γ ⊢λS M : A where Γ ⊢λS A : s for some sort s. We
also say that M is a term and A is a type.

To conclude this part of the section, I collect here the minimal collection of meta-theoretic
lemmas and definitions explicitly necessary for the subsequent results. I do not present
any proofs, and instead refer the reader to any of the nice resources on pure type systems
([2, 3, 9], among others). In what follows, fix a pure type system λS.

▶ Lemma 2. (Generation) For any context Γ and expression A, the following hold.
Sort. For any sort s, if Γ ⊢ s : A, then there is a sort s′ such that A =β s′ and (s, s′) ∈ A.

3 Alternatively, in any non-trivial pure type system λS, a proto-context Γ is a context if Γ ⊢ s : s′ for any
axiom (s, s′).
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s1 s2 s3

Figure 1 A visual representation of the system λU , where an arrow (si, sj) indicates the presence
of the rule (si, sj , sj) (axioms are not represented in the graph except in the order the nodes are
presented).

Variable. For any sort s and variable sx, if Γ ⊢ sx : A, then there is an type B such that
Γ ⊢ B : s and (sx : B) appears in Γ and A =β B.
Π-expression. For any sort s and expressions B and C, if Γ ⊢ ΠsxB . C : A then there
are sorts s′, and s′′ such that Γ ⊢ B : s and Γ, sx : B ⊢ C : s′ and (s, s′, s′′) ∈ R and
A =β s′′.
λ-expression. For any sort s and expressions B and M , if Γ ⊢ λsxB . M : A then there
is a type C and sort s′ such that such that Γ ⊢ ΠsxB . C : s′ and Γ, sx : B ⊢ M : C and
A =β ΠsxB . C.
Application. For expressions M and N , if Γ ⊢ MN : A, then there is a sort s and types
B and C such that Γ ⊢ M : ΠsxB . C and Γ ⊢ N : B and A =β C[N/sx].

▶ Lemma 3. (Type Correctness) For any context Γ and expressions M and A, if Γ ⊢ M : A

then A ∈ S or there is a sort s such that Γ ⊢ A : s.

▶ Definition 4. A pure type system is functional if
for all axioms (s, s′) and (t, t′) if s = t then s′ = t′;
for all rules (s, s′, s′′) and (t, t′, t′′) if s = t and s′ = t′ then s′′ = t′′.

▶ Definition 5. A sort s is a top-sort if there is no sort s′ such that (s, s′) ∈ A.

▶ Lemma 6. (Top-Sort Lemma) For any context Γ, variable x, expressions A and B, and
top-sort s the following hold.
1. Γ ̸⊢ s : A

2. Γ ̸⊢ x : s

3. Γ ̸⊢ AB : s

4. Γ ̸⊢ λxA. B : s.

2.1 Tiered Pure Type Systems
General pure type systems are notoriously difficult to work with so it is typical to consider a
class of pure type systems satisfying a collection of properties, e.g., functionality, persistence,
and stratification, as defined below. Here I choose to work with an simple class of systems I
call tiered pure type systems, which have a very concrete description.

▶ Definition 7. Let n be a positive integer. A pure type system is n-tiered if it has the form

S = {si | i ∈ [n]}
A = {(si, si+1) | i ∈ [n − 1]}
R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}

A tiered system is based if it has the rule (s1, s1, s1).

CVIT 2016



23:6 An Irrelevancy-Eliminating Translation for Pure Type Systems

From this point forward, I will freely use the notation (s, s′) for the rule (s, s′, s′). A
couple remarks about these systems.

These systems can be envisioned as graphs as in Figure 1.
The based 2-tiered systems are exactly the lambda cube.
The n-tiered systems are considered in passing by Barthes et al. (Remark 2.39, [3]). They
include the natural subsystems of ECCn (as defined in [11]) which have only rules of the
form (si, sj , sj) (i.e., excluding rules of the form (si, sj , si)).

Working in tiered systems simplifies the arguments in the subsequent sections because of
their explicit structure, and they are sufficient to consider in so far as their normalization
is equivalent to that of a previously considered classes of systems defined in terms of less
concrete properties. This is likely a folklore result, as I could not find a reference for it, so I
have included the proof here. First, some standard definitions, along with a couple definitions
taken from Barthe et al. [3] for their definition of generalized non-dependent systems. Note
that we have already seen the definition of functional pure type systems (Definition 4) in the
previous section.

▶ Definition 8. A pure type system is persistent if it is functional and
For all axioms (s, s′) and (t, t′) if s′ = t′ then s = t;
R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}.

Let ‘≤A’ denote the reflexive transitive closure of A, and let ‘<A’ be defined as usual
(the subscript is dropped when there is no fear of ambiguity).

▶ Definition 9. A pure type system is weakly stratified if there is no infinite sequence of
sorts s, s′, s′′, . . . such that

s <A s′ <A s′′ <A . . . or s >A s′ >A s′′ >A . . . 4

In order to state the following equivalence, we work in the structural theory of pure type
systems of Roux and van Doorn [13] (albeit, not the particularly interesting part of it).

▶ Definition 10. For pure type systems λS and λS′, the disjoint union λS ⊔λS′ is specified
by

SλS⊔λS′ ≜ SλS ⊔ SλS′

AλS⊔λS′ ≜ AλS ⊔ AλS′

RλS⊔λS′ ≜ RλS ⊔ RλS′

▶ Lemma 11. A pure type system is persistent and weakly stratified if and only if it is the
disjoint union of tiered pure type systems.

Proof. It is straightforward to verify that tiered systems are persistent and weakly stratified,
and that the same is true for disjoint unions of such systems, so we focus on the other
direction. Let λS be a pure type system that is persistent and weakly stratified and let T

denote the set of top-sorts in S. Considered the T -indexed partition {St}t∈T of S where
St = {s | s ≤A t}. We say a chain from s to s′ is a sequence of sorts (υ1, . . . , υk) such
that υ1 = s and υk = s′ and (υi, υi+1) ∈ A for each i in [k − 1]. Persistence ensures that
each set in this partition is totally ordered by ≤A. In particular, it is possible to show that
there is at most one chain ending at t of any length n contained in a set St for a top-sort t.
Functionality then implies that each set in the partition is disjoint. Stratification ensures
that each set is finite. Finally note that the partition covers all of S. If s is not in St for some
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top-sort t, then since s is not a top-sort, there is some other sort s′ such that (s, s′) ∈ A and
s′ is not in any set of the partition. This process can iterated to build an infinite ascending
sequence of sorts. So {St}t∈T is in fact a partition.

Let λSt denote the pure system specified by

SλSt
≜ St

AλSt
≜ AλS ∩ (St × St)

RλSt
≜ RλS ∩ (St × St × St)

The axioms and rules of each system are clearly pairwise disjoint. They also cover all axioms
and rules of λS. For suppose that (s, s′) is an axiom such that s ∈ St and s′ ∈ St′ for distinct
top-sorts t and t′. Since s is not a top-sort, there must be some other sort s′′ in St such
that (s, s′′) ∈ A. Then persistence implies that s′ = s′′, contradicting disjointness. The same
kind of argument applies for the rules. Finally, the fact that each St is totally ordered with
respect to ≤A and is finite implies that each system λSt is tiered. Therefore, we can view
λS as the system

⊔
t∈T λSt. Formally, they are isomorphic pure type systems.5 ◀

This fact can be easily lifted to generalized non-dependent systems.

▶ Definition 12. A pure type system λS is generalized non-dependent if it is persistent
and weakly stratified and its rules are non-dependent, i.e., if (s, s′) ∈ RλS, then s′ ≤A s. A
tiered pure type system λS is non-dependent its rules are non-dependent.

▶ Corollary 13. A pure type system is generalized non-dependent if and only if it is the
disjoint union of non-dependent tiered pure type systems.

Roux and van Doorn [13] show that the (strong) normalization of a disjoint union of pure
type systems is equivalent to the (strong) normalization of each of its individual summands.
So on questions of normalization regarding persistent, weakly stratified (e.g., generalized
non-dependent) pure type systems, it suffices to consider tiered systems.

One of the primary benefits of working in persistent systems in general (and tiered systems
in particular) is that derivable expressions can be classified by the level in the system at
which they are derivable. This property is shown by defining a degree measure on expression
and classifying expressions according to their degree. This result is due to Berardi [5], and
the presentation here roughly follows the same course.

▶ Definition 14. The degree of an expression is given according to the following function
deg : T → N.

deg(si) ≜ i + 1
deg(six) ≜ i − 1

deg(ΠxA. B) ≜ deg(B)
deg(λxA. M) ≜ deg(M)

deg(MN) ≜ deg(M)

5 The definition of a pure type system homomorphism is as one might expect, see the work by Roux and
van Doorn [13] for further details.
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▶ Lemma 15. (Classification) Let λS be an n-tiered pure type system. For any expression
A, the following hold.

deg A = n + 1 if and only if A = sn.
deg A = n if and only if Γ ⊢λS A : sn for some context Γ.
For i ∈ [n − 1], we have deg A = i if and only if Γ ⊢λS A : B and Γ ⊢λS B : si+1 for
some context Γ and expression B.

In particular, for context Γ and expressions M and A, if Γ ⊢ M : A then deg A = deg M + 1.

Finally, a couple meta-theoretic lemmas specific to the systems we will be considering.
The first contains some useful facts about degree. See the presentation by Barendregt [2] for
proofs in the 2-tiered case.

▶ Lemma 16. Let λS be a tiered pure type system and let A and B be expressions derivable
in λS.

If deg(B) = j − 1 then deg(A[B/sj x]) = deg(A).
If A ↠β B, then deg A = deg B.

3 Irrelevancy-Eliminating Translation

We begin with a couple definitions. Fix an n-tiered pure type system λS. We first describe
the sorts which are sufficiently top-sort-like, as well as the properties of these sorts that induce
irrelevant structure. In what follows, it will be convenient to consider sets of top-sort-like
sorts. We call a subset I of [n] an index set for λS, and denote by SI the set {si | i ∈ I}.

▶ Definition 17.
A sort si is rule-isolated if it does not appear in any rules, i.e., for all j, neither (sj , si)
nor (si, sj) appear in RλS.
A sort si is top-sort-like if i < n implies si+1 is rule-isolated (i.e., si is a top sort or
its succeeding sort is rule-isolated).
For any index set J , a sort si is J -irrelevant if there is no sort sj such that j ∈ J and
(sj , si) ∈ RλS. We say si is irrelevant if it is [n]-irrelevant.
An index set I is completely irrelevant in λS, if for each i in I,

si is top-sort-like and irrelevant;
si−1 is ([n] \ I)-irrelevant.

A sort si is completely isolated if si is top-sort-like and rule-isolated.

In the case of complete irrelevance, if I is a singleton set {i}, then the only rule with si−1
appearing second is (si, si−1). By considering sets of indices simultaneously, we can make
weaker assumptions on these preceding sorts. The condition of ([n] \ I)-irrelevance ensures
that si−1 becomes isolated after removing the rules associated with sorts in SI . Note also
that if (si, si) ∈ RλS , then any completely irrelevant index set cannot contain i − 1, i or i + 1.
In particular, for based systems, 1 and 2 cannot appear in any completely irrelevant index
set. Finally, it is important that there is a unique maximum completely irrelevant index set.
In particular, the union of any two completely irrelevant index sets is completely irrelevant.

3.1 Eliminating Completely Irrelevant Rules
This section contains the translation which removes the rules associated with sorts whose
indices appear in a completely irrelevant index set. For the remainder of the section, fix such
a set I. We begin by showing that sorts in SI are sparsely inhabited.
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▶ Lemma 18. Let si be an irrelevant sort such that si is a top-sort or si+1 is irrelevant.
For context Γ and expression A, if Γ ⊢ A : si, then A = si−1 or A ∈ Vsi+1 .

Proof. If i = n, then this follows directly from the top-sort lemma (Lemma 6) and the
fact that sn is irrelevant. In fact, in this case sn is inhabited solely by sn−1. If i ̸= n,
this follows in a similar way, i.e., by induction on the structure of A. By the generation
lemma (Lemma 2), A cannot be a Π-expression as si is irrelevant. Likewise, A cannot be
a λ-expression since si ̸=β ΠxB . C for any expressions B and C. Finally, A cannot be an
application MN since the generation lemma would imply that there is a context Γ and
expressions B and C such that Γ ⊢ M : ΠxB . C and Γ ⊢ ΠxB . C : si+1. But this is not
possible since i + 1 is irrelevant. ◀

This does not hold if si+1 is not irrelevant. If (si+1, si+1) ∈ RλS , for example, then
∅ ⊢ si → si : si+1 and ∅ ⊢ λxsi . x : si → si so ∅ ⊢ (λxsi . x)si−1 : si. This is why we
require both si and si+1 to be irrelevant. Similarly, this does not hold for all expressions of
degree i. If (si+2, si+2) ∈ RλS then ∅ ⊢ si+1 → si+1 : si+2 and ∅ ⊢ λxsi+1 . x : si+1 → si+1.

The primary challenge moving forward is dealing with the fact that variables may appear
as types of sort si. These variables are what will necessitate si+1 being not just irrelevant,
but also isolated. Regardless, the sparsity of types of sort si induces sparsity of expressions
of degree i − 1.

▶ Lemma 19. For index i in I, context Γ and expression M , if Γ ⊢ M : si−1, then M is of
the form Πx1

A1 . . . . Πxk
Ak . B where deg(Aj) ∈ I for all j and either B = si−2 or B ∈ Vsi

.

Proof. By induction on the structure of derivations. The cases in which the last inference is
an axiom, variable introduction, or weakening are straightforward. The last inference clearly
cannot be an abstraction, and it cannot be an application since si is irrelevant. What follows
are the remaining two cases.
Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : si−1

Γ ⊢ ΠxA. B : si−1

Since si−1 is (SλS \ I)-irrelevant, it must be that j ∈ I. The desired result holds after
applying the inductive hypothesis to the right antecedent judgment.
Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ si−1 : si

Γ ⊢ M : si−1

where A =β si−1. Note that deg(A) = i so Γ ⊢ A : si by type correctness. Thus, A = si−1
by Lemma 18, which means the inductive hypothesis can be applied directly to the left
antecedent judgment. ◀

▶ Lemma 20. For index i in I, context Γ, expression A and variable si+1x, if Γ ⊢ A : si+1x,
then A ∈ Vsi

.

Proof. By induction on the structure of derivations. The cases in which the last inference
is an axiom, variable introduction, or weakening are straightforward. The last inference
clearly cannot be a product type formation or an abstraction. The last inference cannot
be an application because si is irrelevant. Finally, all conversions are trivial by the same
argument as in the previous lemma. ◀

CVIT 2016



23:10 An Irrelevancy-Eliminating Translation for Pure Type Systems

▶ Corollary 21. For index i in I, every derivable expression M of degree i − 1 is of the form
Πx1

A1 . . . . Πxk
Ak . B where deg(Aj) ∈ I for all j and B = si−2 or B ∈ Vsi

(and k may be
0).

The Translation
The following translation is defined such that it essentially pre-reduces all redexes whose source
types have degree in I. Naturally, this means it does not strictly preserve β-reductions, but
because these sources types are so sparsely inhabited, we can define a complexity measure on
expressions which is monotonically decreasing in the β-reductions that are pre-performed by
the translation. This is similar to the technique used by Sørensen for simulating π-reductions
[14].

The other wrinkle in defining this translation is that it is difficult to pre-reduce expressions
of variable type because even though such types are sparse-inhabitance, it is unclear a priori
what the value of the expression will be after a series of reductions. By Lemma 20, we
know it reduces to a variable, but we don’t know which variable, and it may be one that is
generalized or abstracted over. We ensure this doesn’t happen by requiring si+1 is isolated,
not just irrelevant. We also introduce a distinguished variable •z of type z for each variable
z of sort si+1 in the context. This gives us a canonical term that the translation can assign
to expressions of this type.

▶ Definition 22. The context-indexed family of functions (τΓ : T → T)Γ∈C as given as
follows.

τΓ(si) ≜ si

τΓ(six) ≜


si−2 i ∈ I and (six : si−1) ∈ Γ
•z i ∈ I and (six : si+1z) ∈ Γ
six otherwise

τΓ(ΠxA. B) ≜
{

τΓ,x:A(B) deg(A) ∈ I
ΠxτΓ(A). τΓ,x:A(B) otherwise

τΓ(λxA. M) ≜
{

τΓ,x:A(M) deg(A) ∈ I
λxτΓ(A). τΓ,x:A(M) otherwise

τΓ(MN) ≜
{

τΓ(M) deg(N) + 1 ∈ I
τΓ(M)τΓ(N) otherwise

where •z is a distinguished variable. This family of function is extended to a single function
on contexts as

τ(∅) ≜ ∅

τ(Γ, sj x : A) ≜


τ(Γ) j ∈ I
τ(Γ), sj x : sj−1, •x : sj x j − 1 ∈ I and A = sj−1

τ(Γ), sj x : τΓ(A) otherwise.

Note that this class of functions is well-defined with respect to the dependence on contexts;
each function can be defined simultaneously, inductively on the structure of the input. As
for proving the desired features of this translation, first note if i ∈ I, then the translation
maps terms of degree i − 1 (where i ∈ I) to canonical atomic terms.
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▶ Proposition 23. For any index i in I, context Γ, and term A, if Γ ⊢ A : si−1, then
τΓ(A) = si−2, and if Γ ⊢ A : si+1x for some variable si+1x, then τΓ(A) = •x.

It suffices to consider the expressions of the form specified by Corollary 21, for which the
above fact clearly holds. This turns out to be a key feature of the translation. Because the
translation is able to drop so much information about these expressions, we can pre-reduce
redexes in which they appear on the right.

We also use the fact that the context associated with a translation can be weakened when
the variable does not appear in its argument.

▶ Proposition 24. For any index i, context Γ, expressions M , A, and B, and variable six,
if Γ ⊢ M : A and Γ ⊢ B : si then τΓ,si x:B(M) = τΓ(M).

We now prove the standard substitution-commutation and β-preservation lemmas for
this translation.

▶ Lemma 25. For any index i, context Γ, expressions M , N , A and B, and variable six, if
Γ, six : A ⊢ M : B and Γ ⊢ N : A then

τΓ(M [N/six]) =
{

τΓ,si x:A(M) i ∈ I
τΓ,si x:A(M)[τΓ(N)/six] otherwise.

Proof. By induction on the structure of M . First suppose that i ∈ I.
Sort. If M is of the form sj , then τΓ(sj [N/six]) = τΓ(sj).
Variable. First suppose M is of the form six. In particular, A =β B, and since deg(A) =
deg(B) = i, we have A = B by Lemma 18. If A = si−1, then by Proposition 23 we have
τΓ(N) = si−2 and

τΓ(six[N/six]) = τΓ(N) = si−2 = τΓ,x:si−1(six).

Similarly, if A is of the form si+1y, then τΓ(N) = •y and

τΓ(six[N/six]) = τΓ(N) = •y = τΓ,x:y(six).

If M is of the form sj y where sj y ̸= six, then τ(sj y[N/six]) = τ(sj y).
Π-Expression. If M is of the form ΠyA. B, then

τΓ((ΠyA. B)[N/x]) = τΓ(ΠyA[N/x]. B[N/x])

=
{

τΓ,y:A(B) deg(A) ∈ I
ΠyτΓ(A). τΓ,y:A(B) otherwise

where the last equality follows from the definition of τ and the inductive hypothesis. This
also depends on Proposition 24 to show that τΓ,y:A(A) = τΓ(A). The cases in which M is a
λ-expression or application are similar. Furthermore, when i ̸∈ I, all cases are analogous. ◀

Before proving the β-preservation lemma, it is convenient to partition the β-reduction
relation into two parts, one part which is directly preserved by the translation (β1) and one
part which is pre-reduced by the translation (β2).

▶ Definition 26. Let β2 denote the notion of reduction given by

(λxA. M)N →β2 M [N/x]

where deg(A) ∈ I, extended to a congruence relation in the usual way. Let β1 denote the
same notion of reduction but with deg(A) ̸∈ I, so that β1 ∩ β2 = ∅ and β1 ∪ β2 = β.
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▶ Lemma 27. For expressions M and N derivable in the context Γ, the following hold.
If M →β1 N , then τΓ(M) →β τΓ(N);
if M →β2 N , then τΓ(M) = τΓ(N);
in particular, if M =β N , then τΓ(M) =β τΓ(N).

Proof. The last item follows directly from the first two. We prove the first two items
by induction on the structure of the one-step β-reduction relation. In the case a redex
(λxA. M)N , if deg(A) ̸∈ I, then we have

τΓ((λxA. M)N) = τΓ(λxA. M)τΓ(N)

= (λxτΓ(A). τΓ,x:A(M))τΓ(N)
→β τΓ,x:A(M)[τΓ(N)/x]
= τΓ(M [N/x])

and otherwise,

τΓ((λxA. M)N) = τΓ(λxA. M)
= τΓ,x:A(M)
= τΓ(M [N/x])

where the last equality in each sequence of equalities follows from the substitution-commut-
ation lemma (Lemma 25). To show the desired result holds up to congruences, it must follow
that expressions dropped by the translation are already in normal form.
Π-Expression. Suppose M is of the form ΠxA. B and N is of the form ΠxA′

. B′ where

ΠxA. B →β ΠxA′
. B′

If deg(A) ̸∈ I, then either A →β A′ and B = B′ or B →β B′ and A = A′ and the inductive
hypothesis can be safely applied. If deg(A) ∈ I, then Lemma 18 implies that A is in normal
form, so A = A′ and B →β B′, and the inductive hypothesis can be safely applied. The case
in which M is a λ-expression is similar.
Application. Suppose M is of the form PQ and N is of the form P ′Q′ where

PQ →β1 P ′Q′

If deg(Q) + 1 ̸∈ I, then either P →β P ′ and Q = Q′ or Q →β Q′ and P = P ′ and the
inductive hypothesis can be safely applied. If deg(Q) + 1 ∈ I, Corollary 21 implies that
Q is in normal form, so Q = Q′ and P →β P ′ and the inductive hypothesis can be safely
applied. ◀

With these two lemmas, we can now prove that the translation preserves typability. The
system we translate to is defined simply as the one in which the rules associated with sorts
in SI are dropped.

▶ Definition 28. The irrelevance reduction of an n-tiered pure type system λS, denoted
here by λS−, is the n-tiered system specified by the rules

RλS \ {(si, sj) | i ∈ I and j ∈ [n]}.

▶ Lemma 29. For context Γ and expressions M and A, if

Γ ⊢λS M : A then τ(Γ) ⊢λS− τΓ(M) : τΓ(A).
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Proof. By induction on the structure of derivations.
Axiom. If the derivation is a single axiom ⊢ si : si+1 then the translated derivation is the
same axiom.
Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : si

Γ, six : A ⊢ six : A

First suppose i ∈ I. If A = si−1, then τΓ,x:si−1(x) = si−2 and τ(Γ) ⊢ si−2 : si−1 where τ(Γ)
is well-formed by the inductive hypothesis; that is, τ(Γ) ⊢ τΓ(A) : si implies τ(Γ) is well-
formed. If A is of the form si+1y, then (si+1y : si−1) ∈ Γ, which implies (•y : si+1y) ∈ τ(Γ)
and τ(Γ) ⊢ •y : si+1y where τ(Γ) is again well-formed by the inductive hypothesis.

Next suppose i − 1 ∈ I and A = si−1. By the inductive hypothesis, we can derive

τ(Γ) ⊢ si−1 : si

τ(Γ), six : si−1 ⊢ six : si−1

and so by weakening,

τ(Γ), six : si−1 ⊢ six : si−1 τ(Γ), six : si−1 ⊢ six : si−1

τ(Γ), six : si−1, •x : six ⊢ six : si−1

The remaining cases are straightforward.
Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : si

Γ, six : B ⊢ M : A

By Proposition 23, we have τΓ,x:B(M) = τΓ(M). By type correctness, Γ ⊢ A : sj for some
index j, so τΓ,x:B(A) = τΓ(A). So the inductive hypothesis implies

τ(Γ) ⊢ τΓ,x:B(M) : τΓ,x:B(A)

We can then use an argument similar to the one in the previous case to extend the context
to τ(Γ, x : B).
Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : si Γ, x : A ⊢ B : sj

Γ ⊢ ΠxA. B : sj

if i ∈ I, then τ(Γ) = τ(Γ, x : A) and τΓ(ΠxA. B) = τΓ,x:A(B) and so τ(Γ) ⊢ τΓ,x:A(B) : sj

by the inductive hypothesis applied to the right antecedent judgment. It cannot be the case
that i − 1 ∈ I and A = si−1 since si is rule-isolated in this case. The remaining case is
straightforward.
Abstraction. Suppose the last inference is of the form

Γ, six : A ⊢ M : B Γ ⊢ ΠxA. B : sj

Γ ⊢ λxA. M : ΠxA. B
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If i ∈ I, then

τ(Γ) = τ(Γ, six : A)
τΓ(λxA. M) = τΓ,x:A(M)
τΓ(ΠxA. B) = τΓ,x:A(B)

so the desired judgment follows directly from the inductive hypothesis applied to the left
antecedent judgment. Again, it cannot be the case that i − 1 ∈ I and A = si−1 since si is
rule-isolated in this case. The remaining case is straightforward.
Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/six]

By type correctness, Γ ⊢ ΠxA. B : sj for some sort sj , and by generation, we have

Γ, six : A ⊢ B : sj

so by Lemma 25, if i ∈ I (i.e., deg(N) + 1 ∈ I), then τΓ(MN) = τΓ(M) and

τΓ(B[N/six]) = τΓ,x:A(B) = τΓ(ΠxA. B).

The desired result then follows directly from the inductive hypothesis applied to the left
antecedent judgment. And if i ̸∈ I, then τΓ(B[N/x]) = τΓ,x:A(B)[τΓ(N)/x] and we have

τ(Γ) ⊢ τΓ(M) : ΠxτΓ(A). τΓ,x:A(B) τ(Γ) ⊢ τΓ(N) : τΓ(A)
τ(Γ) ⊢ τΓ(M)τΓ(N) : τΓ,x:A(B)[τΓ(N)/x]

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : si

Γ ⊢ M : B

where A =β B. Then we have

τ(Γ) ⊢ τΓ(M) : τΓ(A) τ(Γ) ⊢ τΓ(B) : si

τ(Γ) ⊢ τΓ(M) : τΓ(B)

where τΓ(A) =β τΓ(B) by Lemma 27. ◀

It remains to show that this translation is path-preserving. The guiding observation is
that β2-reductions cannot make more redexes, and what redexes may persist must be simpler
in some sense. We define a complexity measure which captures this observation by its being
monotonically decreasing in β2-reductions.

▶ Definition 30. The shallow λ-depth of a term M is the number of top-level λ’s appearing
in it, i.e., the function δ : T → N is given by δ(λxA. N) ≜ 1 + δ(N) and δ(M) ≜ 0 otherwise.
The shallow λ-depth of a redex (λxA. M)N is the shallow λ-depth of its left term λxA. M .

I will simply write "depth" from this point forward.
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▶ Definition 31. Define µ : T → N to be the function which maps an expression to the sum
of the depths of its β2-redexes, i.e.,

µ(si) = µ(x) ≜ 0
µ(ΠxA. B) = µ(λxA. B) ≜ µ(A) + µ(B)

µ(MN) ≜
{

µ(M) + µ(N) + δ(MN) MN is a β2-redex
µ(M) + µ(N) otherwise.

Finally, we prove the monotonicity lemma. It depends on the typed-version of a result
by Lévy for the untyped lambda calculus about the creation of new redexes [10]. I give the
statement of the result here without proof. I also include a definition of the standard notion
of a residual redex, adapted from [17] as well as [8].

▶ Definition 32. Let M and N be expressions such that M →β N by reducing the redex
(λxA. P )Q, and let R be a redex in M . The residuals of R in N are the copies of R which
appear in N after reducing (λxA. P )Q. That is,

if R is (λxA. P )Q, then R has no residuals.
if R ⊂ Q, then the residuals are R in N are the copies of R in P [Q/x];
if R ⊂ P , then the copy of R in P after substitution of the form R[Q/x] is the residual
of R in N ;
if the redex (λxA. P )Q is contained in R, then R after substitution (i.e., R with (λxA. P )Q
replaced by P [Q/x]) is the residual of R in N

if R is disjoint from (λxA. P )Q then R itself is the residual of R in N .

▶ Lemma 33. (Lévy, 1978) For expressions M and N such that M →β N , if (λxA. P )Q is
a redex of N which is not a residual of a redex in M , then it is creates in one of the following
ways.
1. (λyB . y)(λxA. P )Q →β (λxA. P )Q;
2. (λyC . λxD. R)SQ →β (λxD[S/y]. R[S/y])Q where A = D[S/y] and P = R[S/y];
3. (λyB . R)(λxA. P ) →β R[λxA. P/y] where yQ is a sub-expression of R.

▶ Lemma 34. For derivable expressions M and N , if M →β2 N , then µ(M) > µ(N).

Proof. Suppose M reduces to N by reducing the β2-redex (λxC . P )Q. By Corollary 21,
the expression Q is of the form Πx1

A1 . . . . Πxk
Ak . B where deg(Aj) ∈ I for all j and either

B = si−2 or B ∈ Vsi
. This means reducing a β2-redex cannot duplicate existing redexes in

M , so every redex has at most one residual in N . Furthermore, if N has a new β2-redex, it
is by item 2 of Lemma 33, i.e., there are expressions C, D, R, and S, and variable z such
that P = λzD. R and

(λxC . λzD. R)QS →β (λzD[Q/x]. R[Q/x])S.

It is easy to verify that, because of the form of Q, only one new β-redex is created and,
furthermore, δ(R[Q/x]) ≤ δ(R). This implies the new redex has smaller depth than the
redex that was reduced, so even if it is a β2-redex, the complexity of M decreases.

◀

The proof of the main theorem of this sub-section is standard.

▶ Theorem 35. If λS− is strongly normalizing, then λS is strongly normalizing.

CVIT 2016



23:16 An Irrelevancy-Eliminating Translation for Pure Type Systems

Proof. Suppose there is an infinite reduction sequence in λS

M1 →β M2 →β . . .

where M1 is derivable from the context Γ. Since µ is monotonically decreasing in β2-reductions
(Lemma 34), there cannot be an infinite sequence of solely β2-reductions contained in this
sequence. This means there are infinitely many β1 reductions in this sequence, which by
Lemma 27 implies there infinitely many β-reductions in the reduction path

τΓ(M1) →β τΓ(M2) →β . . .

which is in λS− by Lemma 29. ◀

3.2 Eliminating Completely Isolated Sorts
We now handle completely isolated sorts. Recall that a sort si is completely isolated if si

is top-sort-like and rule-isolated. This translation is slightly simpler than the first. It is
a generalization of the observation made in the introduction that one can define a path-
preserving translation from λHOL to λω, i.e., one that eliminates the rule-isolated top-sort.
The two translations can, in fact, be collapsed into a single translation, but it is convenient
to separate it into two parts, especially since the result can be made slightly stronger; the
conditions on si−1 are weaker for completely isolation than for complete irrelevancy.

Fix an n-tiered pure type system λS with n > 2, and a completely isolated sort si.6 In
essence, the following translation removes the completely isolated sort and shifts down all
the sorts that might be above it. Because isolated sorts can only really be used to introduce
variables into the context, the translation pre-substitutes those variables with dummy values
that won’t affect the normalization behavior of the expression after translation.

One notable feature of this translation is that it does not preserve the number of sorts in
the system and, furthermore, does not preserve degree. Thus, it will be useful to be more
careful about variable annotations in the following definitions and lemmas.

▶ Definition 36. The context-indexed family of function {θΓ : T → T}Γ∈C is given as follows.

θΓ(sj) ≜
{

sj j < i

sj−1 otherwise

θΓ(sj x) ≜


si−2 j = i and (six : si−1) ∈ Γ
sj x j < i
sj−1x otherwise

θΓ(Πsj xA. B) ≜ ΠθΓ(sj)x
θΓ(A)

. θΓ,x:A(B)

θΓ(λsj xA. M) ≜ λθΓ(sj)xθΓ(A). θΓ,x:A(M)
θΓ(MN) ≜ θΓ(M)θΓ(N)

This family of functions is extended to a single function on contexts as

θ(∅) ≜ ∅

θ(Γ, sj x : A) ≜
{

θ(Γ) j = i and A = si−1

θ(Γ), θΓ(sj)x : θΓ(A) otherwise.

6 The restriction on n is a technicality that ensures the target system is nontrivial. See, for example, the
variable case of Definition 36.
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As with the previous translation, this one is well-defined with respect to its dependence
on context, and the contexts can be weakened without changing the value of the function
(in analogy with Proposition 24 for τΓ). We go on to prove substitution-commutation,
β-reduction preservation, and typability preservation. The proofs are similar to those in the
previous sub-section and, consequently, are slightly abbreviated.

▶ Lemma 37. For context Γ, expressions M , N , A and B, and variable sj x, if j ̸= i and
Γ, sj x : A ⊢ M : B and Γ ⊢ N : A then θΓ(M [N/sj x]) = θΓ,sj x:A(M)[θΓ(N)/θΓ(sj)x].

Proof. By induction on the structure of M . All cases are straightforward except the case
in which M is a variable, but then the assumption that j ̸= i ensures the desired equality
holds. ◀

▶ Lemma 38. For expressions M and N derivable from Γ, if M →β N , then θΓ(M) →β

θΓ(N). Furthermore, if M =β N , then θΓ(M) =β θΓ(N).

Proof. The second part follows directly from the first, which follows by induction on the
structure of the one-step β-reduction relation. In the case of a redex (λxA. M)N , we have

θΓ((λxA. M)N) = (λxθΓ(A). θΓ,x:A(M))θΓ(N)

→β θΓ,x:A(M)[θΓ(N)/θΓ(sj)x]

= θΓ(M [N/θΓ(sj)x])

where the last equality follows from Lemma 37, keeping in mind that j ≠ i since i is isolated,
so the lemma can be safely applied. ◀

Finally, typability preservation. The target system is as expected, the isolated sort is
removed and potential sorts above it are shifted down.

▶ Definition 39. The i-collapse of an n-tiered pure type system λS, denote here by λS∗, is
the (n − 1)-tiered systems specified by the rules

RλS∗ ≜ {(θ∅(sj), θ∅(sk)) | (sj , sk) ∈ RλS and j ̸= i and k ̸= i}.

▶ Lemma 40. For context Γ and expressions M and A where M ̸= si−1, if

Γ ⊢ M : A then θ(Γ) ⊢ θΓ(M) : θΓ(A).

Proof. By induction on the structure of derivations. The proof differs slightly depending on
whether or not si is a top-sort. I make clear below which cases differ.
Axiom. Since M ̸= si−1, the judgment ∅ ⊢ θ∅(sj) : θ∅(sj+1) is still an axiom.
Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : sj

Γ, sj x : A ⊢ sj x : A

If j = i and A = si−1, then θ(Γ) ⊢ si−2 : si−1 is still derivable. Note that θ(Γ) can be proved
to be well-formed by the inductive hypothesis. If j < i, then we have

θ(Γ) ⊢ θΓ(A) : sj

θ(Γ), sj x : θΓ(A) ⊢ sj x : θΓ(A)
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If j > i, then in particular si is not a top-sort. This case is then similar to the previous one,
keeping in mind that this might use the rule (si−1, si) for the translated derivation in the
system λS∗, but not in the case that si is a top-sort.
Weakening. This case follows directly from the fact that θΓ,x:B(M) = θΓ(M) whenever M

and B are derivable from Γ. It is also similar to the analogous case in the previous sub-section.
Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, sj x : A ⊢ B : sk

Γ ⊢ ΠxA. B : sk

Note that j ̸= i and k ≠ i since si is rule-isolated. In particular, neither A nor B are si−1.
Therefore, we can apply the inductive hypothesis directly to each antecedent judgment and
derive the desired consequent judgment.
Abstraction. Suppose the last inference is of the form

Γ, sj x : A ⊢ M : B Γ ⊢ ΠxA. B : sk

Γ ⊢ λxA. M : ΠxA. B

Note that j ̸= i since si is rule-isolated, and so ΠxA. B would not be derivable. Furthermore,
B ̸= si (so M ̸= si−1) since si is irrelevant. Therefore, we can apply the inductive hypothesis
directly to each antecedent judgment and derive the desired consequent judgment.
Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

Note that deg(A) ̸= i+1 (and in particular N ̸= si−1), since si+1 is rule-isolated. Furthermore,
deg(A) ̸= i (and deg(N) ̸= i − 1) since si is rule-isolated. Therefore, we can apply the
inductive hypothesis directly to each antecedent judgment.

θ(Γ) ⊢ θΓ(M)θΓ(N) : θΓ,x:A(B)[θΓ(N)/x]

and θΓ,x:A(B)[θΓ(N)/x] = θΓ(B[N/x]) by Lemma 37.
Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj

Γ ⊢ M : B

If M = si−1, then A =β si =β B. Then by Lemma 18, in fact A = B. If B = si−1, then by
Corollary 21 we again have A = B. Otherwise, by Lemma 38, θΓ(A) =β θΓ(B) and we can
derive θ(Γ) ⊢ θΓ(M) : θΓ(B) by the inductive hypothesis and conversion. ◀

Since β-reductions are simulated directly, the argument for the final theorem is simple.

▶ Theorem 41. If λS∗ is strongly normalizing then λS is strongly normalizing.

Proof. Suppose there is an infinite reduction path in λS starting at M , which is derivable
from the context Γ. Note that this sequence cannot contain the term si−1 since this is
a normal form. Therefore, applying θΓ to each term yields an infinite reduction path in
λS∗. ◀

It is also important to note that weak normalization is preserved in the opposite direction.

▶ Proposition 42. If λS is weakly normalizing then so is λS∗ is weakly normalizing.
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s1 s2 s3 s4 s5 s6 s7 s8 s9

Figure 2 The iteration of irrelevance reductions can be fairly complex; it may be that a sort
cannot appear in a completely irrelevant index set until after several iterations. In the system above,
the maximum completely irrelevant index set of this system is {9}, but after eliminating the rules
associated with s9, both s9 and s5 become rule-isolated, and so the next maximum completely
irrelevant index set is {4, 8}. It is not difficult to imagine how this effect can be scaled up to larger
systems.

This is trivial in the case that the sorts are maintained—as for the irrelevance reduc-
tion—and also in the case that the eliminated sort is a top-sort, but requires, in the case
of a top-sort-like sort, noting that any term in λS∗ can be embedded into λS up to sort
renaming.

3.3 The Final Translation
With these two translations, we can now define one final translation, which is the composition
of the fixed-points of these to translations.

▶ Definition 43. For any tiered pure type system λS, let IλS denote its unique maximum
completely irrelevant index set and let iλS denote the maximum index of a completely isolated
sort in λS, if one exists. Let τ(λS) denote the fixed-point of taking the irrelevance reduction
of λS with respect to its maximum completely irrelevant set IλS (i.e., until IλS = ∅) and let
θ(λS) denote the fixed-point of taking the iλS-collapse of λS (i.e., until λS has no completely
isolated sort or is 2-tiered). The irrelevance elimination of λS, denoted as λS↓ is the
system θ(τ(λS)).

See Figure 2 for an example of this transformation. The main theorem of this paper is as
follows. It is simply the observation that the translations from the previous sub-sections can
be composed.

▶ Theorem 44. For any tiered pure type system λS, if λS↓ is strongly normalizing, then λS

is strongly normalizing.

And, as prefaced above, this result can be bootstrapped with existing results for the
Barendregt-Geuvers-Klop conjecture in the expected way.

▶ Corollary 45. For any tiered pure type system λS, if weak normalization implies strong
normalization for λS↓, then weak normalization implies strong normalization for λS.

Proof. If λS is weakly normalizing, then λS↓ is weakly normalizing, since any term in λS↓

can be embedded in λS. But then λS↓ is strongly normalizing by assumption, which implies
λS is strongly normalizing by Theorem 44. ◀

CVIT 2016
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By the result of Barthe et al., if λS↓ is non-dependent, clean, and negatable, then weak
normalization implies strong normalization in λS. Since λS↓ can be non-dependent even if
λS has dependent rules, this extension allows us to prove the conjecture of some systems
with dependencies. Cleanliness is a technical restriction that I won’t go into here, but a pure
type system is negatable if it has the rule (si, si) whenever si is relevant. So this extension
also allows us to consider systems with non-negatable sorts.

4 Conclusions

I have presented a path-preserving translation from a tiered pure type system λS to a weaker
system λS↓ which is, in essence, λS without its irrelevant structure. When combined with
results for the Barendregt-Geuvers-Klop conjecture, it widens the class of systems for which
the conjecture applies, most notably to systems with dependent rules, but also to systems
with non-negatable sorts. This is a step towards proving the conjecture for all tiered systems,
in particular because it highlights those systems which require further analysis. For example,
besides dealing with systems that have more dependences, it appears that dealing with
circular rules is one of the clear barriers in strengthening these results. For 3-tiered systems,
we extend existing results to include the system specified by

s1 s2 s3

but not to the same system with the additional rule (s3, s3). Circular rules break irrelevancy
and, consequently, induce much more complicated structure in the system. There is also
likely other forms of irrelevant structure that are not covered by the translation in this paper.

Additionally, it is worth noting that the conditions on completely irrelevant index sets
cannot be trivially weakened. If, for example the irrelevance condition on preceding sorts
was removed, this technique would apply to λU (i.e., the same system presented above but
with the additional rule (s2, s2)), leading to a contradiction since λU is non-normalizing.
Circular rules again seem to be at the core of this issue. More carefully considering λU

and related non-normalizing systems through the lens of these results—particularly why
the techniques don’t apply to these systems—may yield a more structural understanding of
the non-normalization of λU , independent of Girard’s paradox. Regardless, I hope to have
demonstrated with this translation that, despite the full Barendregt-Geuvers-Klop conjecture
seeming quite far from being solved, there are still a number of approachable questions and
avenues for further development.
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