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A Plan

▶ State Girard’s paradox.
▶ Tell the story of how we get to Girard’s paradox from the

classical set-theoretic paradoxes.
▶ Describe why this is an interesting paradox, not just a

set-theoretic analog.
▶ Throw a bit of type theory at you.

Disclaimer 1. This will be a bit of a departure. This isn’t really
TCS, maybe closer to logic or “technical philosophy.” So please
stop me at any time for questions.

Disclaimer 2. For those of you who do know a bit about what
I’m talking about, I’m going to say some incorrect stuff. Feel
free to grill me on it.
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A Story

It’s summer, 1902. The setting is the German city of Jena. We
imagine a middle-aged Gottlob Frege—accomplished, perhaps
weary—sitting in his home garden rereading a letter.

He is in preparations to publish his second volume on the
logical foundations of arithmetic, albeit by less-than-ideal
means; he could not find a publisher so he is paying for the
printing himself.

The letter is from a young Bertrand Russell. It reveals an
inconsistency in the logical system Frege had dedicated the last
two decades working on.

(You can fill in the next part)
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A Paradox

Comprehension Axiom Schema. ∃X∀x.(x ∈ X ⇔ ϕ(x)).
In human speak. Give me a statement about things, I can
construct a set which contains the things that satisfy the
statement.

Ex. If ϕ(x) = x is red, then there is a set R of all red things, i.e.,
R = {x | x is red}.

Ex. We can construct the set {X | X ∈ X} (this turns out to be
empty in most set theories).

Russell’s Paradox. Consider R = {X | X ̸∈ X}. Is R ∈ R?
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Ramified Type Theory (Russell, 1908)

Type Theory to the rescue (sort of).

Assign every object in the language a type (say, a natural
number). Then we syntactically restrict A ∈ B so that the type
of A is less than the type of B.

We could never even write X ∈ X since X has the same type as
itself.

The takeaway. Type theory helps us avoid impredicativity, or
self-referential definitions. It allows us to classify objects by
complexity so that we know we’re using less complex objects to
build up more complex objects.
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The set of all sets

Restricted Comprehension Axiom Schema.
∀Y∃X∀x.(x ∈ X ⇔ (ϕ(x) ∧ x ∈ Y)).
In human speak. Give me a statement about things, I can
construct a set which contains the things from a set I know
exists that satisfy the statement.

We can use Russell’s paradox positively to prove there can be
no set S of all sets. Otherwise, we could construct the Russell
set

R = {X ∈ S | X ̸∈ X}
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What is type theory?

Fair question. . .

To a Computer Scientist. A system for specifying the behavior
of a program or function in a program. It makes programs
more predictable and more easily composed.

To a Mathematician. A labeled rewrite system, where labels
can be used to systematically describe a subset of the rewritable
terms. Meta-theoretic questions can be then asked about this
subset.

To a Philosopher. A way of defining ontological categories. We
don’t say “I read the car” because cars are not in the type of
thing we read.
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Curry-Howard Isomorphism

Question. What is type theory to a logician? Well, its a logic.

Some basic examples

id : a -> a
id x = x

tran : (a -> b) -> (b -> c) -> (a -> c)
tran f g x = f (g x)

double_neg : a -> ((a -> b) -> b)
double_neg x f = f x

Types are Theorems. Programs are proofs. Provability becomes
type inhabitance.
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Brouwer-Heyting-Kolmogorov Interpretation

The BHK interpretation describes a deep connection between
proof and computation. It applies to a wide range of settings,
but the main idea we want here:

View a proof of A → B as a function which maps a proof of A to
a proof of B.

When we write a program of a given type, we’re giving a
compact representation of a formal proof tree.

Proofs are objects which can be directly manipulated.
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Dependent Types (or the beginning of our woes)

Recap. Type are theorems. Programs are proofs. We write
programs which manipulate proofs.

Question. But what about actual mathematics?

Suppose we want to prove (i.e., implement) the theorem (i.e.,
type) all natural numbers have prime factorizations.

This proof should be a function which maps n to a proof that n
has a prime factorization. And should have a type that looks
like

(x : Nat) -> has_prime_fact x

has prime fact has to depend on x. The proof that 2 has a
factorization should not count as a proof that 100 has a
factorization.
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But wait...

Question. What is the type of has prime fact?

It should map a number to a statement. And we said theorems
are types so lets say

has_prime_fact :: Nat -> Type

But wait (again)... what is the type of Type? Eh, let’s say, Type.
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What is type theory actually?

A type theory is specified by a grammar of terms (and types),
and a collection of rules for deriving typing judgments.

Typing judgments are of the form

Γ ⊢ M : A

which means M is of type A in the context Γ (a context is a
collection of typed variables, think the environment in
programming, or a collection of assumptions in logic)

The Principle of Explosion. A type theory is inconsistent if
every type is inhabited, i.e., for every A, there is a Γ and M such
that Γ ⊢ M : A.
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Dependent Type Theory (Martin-Löf, 1972)
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Dependent Products

Γ, x : A ⊢ M : B
Γ ⊢ λxA. M : ΠxA. B

λxA. M is a function from A to B (where B might depend on x).

λxA. M is a proof of the theorem “for all x of type A, B(x)
holds.”

In code. (fun x => M) : (x : A) -> B
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Dependent Sums

Γ ⊢ M : A Γ ⊢ N : B(M)

Γ ⊢ (M,N) :
∑

xA.B

(M,N) is a pair where M is of type A and N is of type B
instantiated at M.

(M,N) is a proof of the theorem “there exists an x of type A
such that B(x)” with M as the witness and N as the proof that
B(M) holds.

In code. (m, n) : (x : A ** B).
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And of course ⊢ Type : Type

Question. Why haven’t we learned our lesson? Aren’t we
begging for a paradox?

Observation 1. Remember, we’re writing programs, which can
be used for “normal” computation as well. We can write
functions can apply to numbers and functions that apply to
proofs.

Observation 2. In set theory, we have two levels of discourse.
One about sets and one about statements about sets. The
statement ‘x ∈ A‘ is not a part of the set-theoretic universe, even
though it can be represented in set theory.

In type theory, proofs and theorems have the same
ontological status as objects like numbers, tree, groups, etc.
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Russell’s Paradox in Type Theory

Suppose we try to write the type

(A : Type ** (not (is_of_type A A)))

We can’t write is of type inside type theory.

Comprehension allows the theory to affect things at the objects
level which can lead to impredicativity.

We avoid this impredicativity by internalizing the theory, and
then not allowing the meta-theory to play any role in the theory
itself.

The catch. There are other set theoretic paradoxes! Ones more
amenable to type-theoretic representation.
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Other Set-Theoretic Paradoxes

Cantor’s Paradox. There is no greatest cardinal number.

Burali-Forti Paradox. There is no set of all ordinal number.

Mirimanoff’s Paradox. The set of well-founded sets is not
well-founded, i.e., there is no set of all well-founded sets.

Girard’s Paradox (expressed in set theory). The strict
well-quasi-ordering of all strict well-quasi-orderings is not
well-founded.

18 / 24



Other Set-Theoretic Paradoxes

Cantor’s Paradox. There is no greatest cardinal number.

Burali-Forti Paradox. There is no set of all ordinal number.

Mirimanoff’s Paradox. The set of well-founded sets is not
well-founded, i.e., there is no set of all well-founded sets.

Girard’s Paradox (expressed in set theory). The strict
well-quasi-ordering of all strict well-quasi-orderings is not
well-founded.

18 / 24



Other Set-Theoretic Paradoxes

Cantor’s Paradox. There is no greatest cardinal number.

Burali-Forti Paradox. There is no set of all ordinal number.

Mirimanoff’s Paradox. The set of well-founded sets is not
well-founded, i.e., there is no set of all well-founded sets.

Girard’s Paradox (expressed in set theory). The strict
well-quasi-ordering of all strict well-quasi-orderings is not
well-founded.

18 / 24



Other Set-Theoretic Paradoxes

Cantor’s Paradox. There is no greatest cardinal number.

Burali-Forti Paradox. There is no set of all ordinal number.

Mirimanoff’s Paradox. The set of well-founded sets is not
well-founded, i.e., there is no set of all well-founded sets.

Girard’s Paradox (expressed in set theory). The strict
well-quasi-ordering of all strict well-quasi-orderings is not
well-founded.

18 / 24



The Paradox in Naive Set Theory

A strict quasi-well-ordering is a set together with a transitive
well-founded binary relation (no infinite descending
sequences).

We can define the ordering (X, <X) <Ω (Y, <Y) as: there exists a
function f : X → Y which is bounded above (with respect to
<Y) and monotonic.

Lemma. <Ω is transitive and well-founded, so we can define
(Ω, <Ω), where Ω is the set of all strict quasi-well-orderings.

The final blow. (Ω, <Ω) is the maximum ordering. In particular,
(Ω, <Ω) <Ω (Ω, <Ω)
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In Code (1/2)

tran : (a -> a -> Type) -> Type
tran {a} f = (x, y, z : a) -> f x y -> f y z -> f x z

nempty : (a -> Type) -> Type
nempty {a} p = (x : a ** p x)

no_lb : (a -> a -> Type) -> (a -> Type) -> Type
no_lb {a} f p = (x : a) -> p x

-> (y : a ** (p y, f y x))

wf : (a -> a -> Type) -> Type
wf {a} f = (p : a -> Type) -> nempty p

-> no_lb f p -> False
Omega : Type
Omega =
(a : Type ** f : (a -> a -> Type) ** (tran f, wf f))

20 / 24



In Code (2/2)

Omega : Type
Omega =
(a : Type ** f : (a -> a -> Type) ** (tran f, wf f))

LTN : Omega -> Omega -> Type
LTN (a ** ltn_a ** _) (b ** ltn_b ** _) =

( f : (a -> b)

** z : b

** ( (x, y : a) -> ltn_a x y -> ltn_b (f x) (f y)
, (x : a) -> ltn_b (f x) z
)

)

Omega_as_Omega : Omega
Omega_as_Omega = (Omega ** LTN ** (..., ...))

Omega_LTN_Omega : LTN Omega_as_Omega Omega_as_Omega
Omega_LTN_Omega = ...
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Girard’s Paradox

Theorem. Martin-Löf’s dependent type theory (as originally
presented) is inconsistent.

In the code above, we can derive a term of type False, which
is the same as the type (A : Type) -> Type.

The fix. Another heirarchy! We include

Type1 : Type2 : Type3 : . . .
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We don’t need ⊢ Type : Type

Theorem. In fact, a much weaker system called λU is
inconsistent and this system doesn’t have circular typing rules.

We can even still play the entire game as before in the type
hierarchy, but we can only derive

Omega_1 : Type_2
Omega_1 =
(a : Type_1 ** f : (a -> a -> Type_1) ** (..., ...))

Omega_2 : Type_3
Omega_2 =
(a : Type_2 ** f : (a -> a -> Type_1) ** (..., ...))

thm : LTE Omega_1_as_Omega Omega_2_as_Omega
...

So we can never derive the full contradiction.
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Final Remarks

Despite this being a very old question there is still a lot that is
not known, and our modern perspective of type theory might
allow us to approach these questions more readily.

Open Questions.
▶ Are the any other systems besides λU that are inconsistent?
▶ Can all set-theoretic paradoxes eventually be translated

into type theory?
▶ If a system has a non-normalizing term (an infinite loop), is

it inconsistent?
▶ Does inconsistency always imply a fixed-point

combinator?

https://github.com/nmmull/Falsum
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