
Strong Normalization from Weak Normalization

in Non-Dependent Pure Type Systems via

Thunkification

Nathan Mull

October 13, 2022

Abstract

In this report, I present a generalization of Xi’s thunkification trans-
lation [14] to a class of non-dependent pure type systems, in analogy with
the generalization of Sørensen’s CPS translation [12] by Barthe et al. [3].
The primary benefit of this result, as with Xi’s original translation, is
that its proof is quite a bit simpler than its CPS-based counterpart. As
a further simplification, I also present the class of tiered pure type sys-
tems, which are concretely specified, and so simpler to work with than the
systems considered by Barthe et al. and others, but are equivalent with
respect to questions regarding normalization.

1 Introduction

Pure type systems were introduced by Terlouw [13], Berardi [4], and later
by Barendregt [1, 2], as a natural generalization of the lambda cube; they
include the lambda cube as well as systems with more complex sort struc-
ture and product type formation. The study of pure type systems can in
some sense be viewed as the study of how sort structure affects the meta-
theoretic properties of a type system, especially because of the minimal
set of type formers (e.g., there are no Σ-types). One such meta-theoretic
property, arguably one of the most important, is normalization. A type
system is weakly normalizing if every typable term has a normal form and
is strongly normalizing if no typable term appears in an infinite reduction
sequence. Girard [7] demonstrated that sort structure can have a non-
trivial effect on the normalization behavior of a type system by showing
that the pure type system λU is not strongly normalizing, the import
being that circularity in the sort structure of a pure type system is not a
necessary condition for non-normalization. This leaves open the problem
of understanding the interplay of sort structure and normalization. One
particular open question that has persisted is the Baredregt-Geuvers-Klop
conjecture, which states that weak normalization implies strong normal-
ization for all pure type systems.

1

The primary technique for proving strong normalization from weak
normalization passes through some form of the λI-calculus, where it read-
ily follows from a conservation theorem along the lines of the one proved
by Church and Rosser for the untyped lambda calculus [6]. The argument
is roughly as follows: Suppose a system λS is weakly normalizing. Define
a translation from expressions to λI-expressions in λS which preserve in-
finite reduction paths. The translated terms are weakly normalizing and,
hence, are strongly normalizing by the conservation theorem. And since
the translation preserves infinite reduction paths, the untranslated terms
are themselves strongly normalizing.

This technique was originally used by Sørensen [12] via continuation-
passing (CPS), and Xi [14] subsequently presented an alternative proof
via thunkification that is arguably simpler; rather than passing around
continuations, expressions are thunked and the unit term which is passed
along to evaluate thunks is padded with sub-expression information neces-
sary to translate to λI-expressions. Barthe et al. [3] generalized Sørensen’s
result to a class of non-dependent pure type systems which includes non-
normalizing systems like λU . This report contains the analogous gener-
alization for Xi’s thunkification translation, with the hope of providing a
simpler, more approachable proof of the main result of the Barthe et al.
that may present opportunities for further improvements.

In the interest of further simplification, I also present a class of basic,
concrete pure type systems I call tiered pure type systems. Despite their
simplicity they are sufficient to consider with regards to questions about
normalization behavior if we want to derive the same result as the one
by Barthe et al. Tiered pure type systems can be viewed as the atoms
of persistent stratified systems, i.e., the persistent stratified systems are
disjoint unions of tiered systems.

In what follows I present some preliminary material, which includes
some exposition on tiered systems. I then present the generalized thunki-
fication translation in two parts: one part for the type-level translation
and one part for term-level translation. Finally, I show how to derive
strong normalization from weak normalization with this translation.

2 Preliminaries

A pure type system is specified by a triple of sets (S,A,R) satisfying
A ⊂ S × S and R ⊂ S × S × S. The elements of S, A, and R are called
sorts, axioms and rules, respectively. We use s and t as a meta-variable
for sorts.1

For each sort s, fix a Z+-indexed set of expression variables Vs. Let
svi denote the ith expression variable in Vs and let V denote

⋃
s∈S Vs.

We use x, y, and z as meta-variables for expression variables. The choice
to annotate variables with sorts is one of convenience. The annotations

1For any subsequent meta-variables, we also allow positive integer subscripts and tick
marks, e.g., s1, s2, and s′. Note, however, that in later sections, si will refer to a particular
sort in tiered systems. We will try to be as clear as possible when distinguishing between
these two cases of notation.

2

can be dropped for the systems we consider, and are selectively included
in the exposition.

The set of expressions of a pure type system with sorts S is described
by the grammar

T ::= S | V | ΠVT. T | λVT. T | TT

We use M , N , P , A, B, and C as meta-variables for expressions. Free
variables, bound variables, α-congruence, β-reduction, substitution, etc.
are defined as usual (see, for example, Barendregt’s presentation [2]). Sub-
stitution of x with N in M is denoted M [N/x].

A statement is a pair of expressions, denoted M : A. The first ex-
pression is called the subject and the second is called the predicate. A
proto-context is a sequence of statements whose subjects are expression
variables. We call these statements appearing in proto-contexts decla-
rations. We use Γ, ∆, and Υ as meta-variables for contexts. Often the
sequence braces of contexts are dropped and concatenation of contexts is
denoted by comma-separation. The β-equality relation and substitution
extend to contexts element-wise. For a context Γ and statement (x : A)
we write (x : A) ∈ Γ if that statement appears in Γ. We define the subset
relation Γ ⊂ ∆ for contexts Γ and ∆ analogously.

A proto-judgment is a proto-context together with statement, de-
noted Γ ⊢ M : N . The designation “judgment” is reserved for proto-
judgments that are derivable according to the rules below. Likewise, the
designation “context” is reserved for proto-contexts that appear in some
(derivable) judgment.2

Definition 1. The pure type system λS specified by (S,A,R) has the
following rules for deriving judgments. In what follows, the meta-variables
s and s′ range over all sorts in S when unspecified. We say that a variable
sx is fresh with respect to a context Γ if it does not appear anywhere in
Γ.

• Axioms. For any axiom (s, s′)

⊢λS s : s′

• Variable Introduction. For a fresh variables sx

Γ ⊢λS A : s

Γ, sx : A ⊢λS
sx : A

• Weakening. For a fresh variable sx

Γ ⊢λS M : A Γ ⊢λS B : s

Γ, sx : B ⊢λS M : A

• Product Type Formation. For any rule (s, s′, s′′)

Γ ⊢λS A : s Γ, sx : A ⊢λS B : s′

Γ ⊢λS ΠsxA. B : s′′

2Alternatively, in any non-trivial pure type system λS, a proto-context Γ is a context if
Γ ⊢ s : s′ for any axiom (s, s′).

3

• Abstraction.

Γ, sx : A ⊢λS M : B Γ ⊢λS ΠsxA. B : s′

Γ ⊢λS λsxA. M : ΠsxA. B

• Application.

Γ ⊢λS M : ΠsxA. B Γ ⊢λS N : A

Γ ⊢λS MN : B[N/sx]

• Conversion. For any terms A and B such that A =β B

Γ ⊢λS M : A Γ ⊢λS B : s

Γ ⊢λS M : B

The subscript on the turnstile is dropped when there is no fear of am-
biguity. The annotations on variables in Π-expressions and λ-expressions
are non-standard, and will in most cases be dropped, but they affect the
statement of the generation lemma (Lemma 1). It is also standard to
write A → B for ΠxA. B in the case that x does not appear free in B,
and to use the derived inference rule

Γ ⊢λS A : s Γ ⊢λS B : s′

Γ ⊢λS A → B : s′′

An expression M is said to be derivable in λS if there is some con-
text Γ and expression A such that Γ ⊢λS M : A. Although there is no
distinction between terms and types, it is useful to call a judgment a type
judgment if it is of the form Γ ⊢ A : s where s ∈ S, and a term judg-
ment if it is of the form Γ ⊢ M : A where Γ ⊢ A : s for some sort s. We
also say that M is a term and A is a type. By type correctness (Lemma 3),
a judgment that is not a type judgment is a term judgment, though some
judgments are both type and term judgments. In the system specified by
({s1, s2}, {(s1, s2)}, ∅), for example,

• ⊢ s1 : s2 is a type judgements but not a term judgment,

• x : s1 ⊢ x : s1 is a type judgment and a term judgment, and

• x : s1, y : x ⊢ y : x is a term judgment but not a type judgment.

2.1 Meta-Theory

We collect here the meta-theoretic lemmas necessary for the subsequent
results. I choose not to present any proofs, and instead refer the reader to
any of the great resources on pure type systems ([2, 3, 8], among others).
For the remainder of the section, fix a pure type system λS.

Lemma 1. (Generation) For any context Γ and expression A, the follow-
ing hold.

• Sort. For any sort s, if Γ ⊢ s : A, then there is a sort s′ such that
A =β s′ and (s, s′) ∈ A.

• Variable. For any sort s and variable sx, if Γ ⊢ sx : A, then there
is an type B such that Γ ⊢ B : s and (sx : B) appears in Γ and
A =β B.

4

• Π-expression. For any sort s and expressions B and C, if

Γ ⊢ ΠsxB . C : A

then there are sorts s′, and s′′ such that

Γ ⊢ B : s and Γ, sx : B ⊢ C : s′

and (s, s′, s′′) ∈ R and A =β s′′.

• λ-expression. For any sort s and expressions B and M , if

Γ ⊢ λsxB . M : A

then there is a type C and sort s′ such that such that

Γ ⊢ ΠsxB . C : s′ and Γ, sx : B ⊢ M : C

and A =β ΠsxB . C.

• Application. For expressions M and N , if Γ ⊢ MN : A, then there

is a sort s and types B and C such that Γ ⊢ M : ΠsxB . C and
Γ ⊢ N : B and A =β C[N/sx].

Lemma 2. (Substitution) For contexts Γ and ∆ and expressions M , N ,
A and B, if

Γ, x : A,∆ ⊢ M : B and Γ ⊢ N : A

then
Γ,∆[N/x] ⊢ M [N/x] : B[N/x]

Lemma 3. (Type Correctness) For any context Γ and expressions M and
A, if Γ ⊢ M : A then A ∈ S or there is a sort s such that Γ ⊢ A : s.

Lemma 4. (Thinning) For contexts Γ and ∆ and expressions M and A,
if Γ ⊂ ∆ and Γ ⊢ M : A, then ∆ ⊢ M : A.

Lemma 5. (Permutation) For contexts Γ and ∆, variables x and y, and
expressions A, B, M , and C, if x does not appear free in B and

Γ, x : A, y : B,∆ ⊢ M : C

then
Γ, y : B, x : A,∆ ⊢ M : C

Definition 2. A pure type system is functional if

• for all axioms (s, s′) and (t, t′) if s = t then s′ = t′;

• for all rules (s, s′, s′′) and (t, t′, t′′) if s = t and s′ = t′ then s′′ = t′′.

Lemma 6. (Type Unicity) If λS is functional then for any context Γ and
expressions M , A, and B, if Γ ⊢ M : A and Γ ⊢ M : B, then A =β B.

Definition 3. A sort s is a top-sort if there is no sort s′ such that
(s, s′) ∈ A.

Lemma 7. (Top-Sort Lemma) For any context Γ, variable x, expressions
A and B, and top-sort s the following hold.

1. Γ ̸⊢ s : A

2. Γ ̸⊢ x : s

3. Γ ̸⊢ AB : s

4. Γ ̸⊢ λxA. B : s.

5

s1 s2 s3

Figure 1: A visual representation of the system λU , where an arrow (si, sj)
indicates the presence of the rule (si, sj , sj) (axioms are not represented in the
graph except in the ordered the nodes are presented).

2.2 Tiered Pure Type Systems

General pure type systems are notoriously difficult to work with so it is
typical to consider a class of pure type systems satisfying a collection of
properties, e.g., functionality, persistence, and stratification, as defined
below. Here I choose to work with an simple class of systems I call tiered
pure type systems, which have a very concrete description.

Definition 4. Let n be a positive integer. A pure type system is n-tiered
if it has the form

S = {si | i ∈ [n]}
A = {(si, si+1) | i ∈ [n− 1]}
R ⊂ {(s1, s1, s1)} ∪ {(s, s′, s′) | (s, s′) ∈ S × S}

From this point forward, I will freely use the notation (s, s′) for the
rule (s, s′, s′). A couple remarks about these systems:

• these systems can be envisioned as graphs as in Figure 1;

• the 2-tiered systems are exactly the lambda cube;

• the n-tiered systems and are considered in passing by Barthes et al.
(Remark 2.39, [3]). They include natural subsystems of ECCn (as
defined in [10]) with only the two-sorted rules.

Working in tiered systems simplifies the arguments in the following section
because of their explicit structure, and they are sufficient to consider in so
far as their normalization is equivalent to that of a previously considered
classes of systems defined in terms of less concrete properties. This is likely
a folklore result, as I could not find a reference for it, so I have included
the proof here. First, some standard definitions, along with a couple
definitions taken from Barthe et al. [3] for their definition of generalized
non-dependent systems. Note that we have already seen the definition of
functional pure type systems (Definition 2) in the previous section.

Definition 5. A pure type system is persistent if it is functional and

• For all axioms (s, s′) and (t, t′) if s′ = t′ then s = t;

• R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}
Let ‘≤A’ denote the reflexive transitive closure of A, and let ‘<A’

be defined as usual (the subscript is dropped when there is no fear of
ambiguity).

6

Definition 6. A pure type system is weakly stratified if there is no
infinite sequence of sorts s, s′, s′′, . . . such that

s < s′ < s′′ < . . . or s > s′ > s′′ > . . . 3

In order to state the following equivalence, we work in the structural
theory of pure type systems of Roux and van Doorn [11] (albeit, not the
particularly interesting part of it).

Definition 7. For pure type systems λS and λS′, the disjoint union
λS ⊔ λS′ is specified by

SλS⊔λS′ ≜ SλS ⊔ SλS′

AλS⊔λS′ ≜ AλS ⊔ AλS′

RλS⊔λS′ ≜ RλS ⊔RλS′

Lemma 8. A pure type system is persistent and weakly stratified if and
only if it is the disjoint union of tiered pure type systems.

Proof. It is straightforward to verify that tiered systems are persistent
and weakly stratified, and that the same is true for disjoint unions of
such systems, so we focus on the other direction. Let λS be a pure type
system that is persistent and weakly stratified and let T denote the set
of top-sorts in S. Considered the T -indexed partition {St}t∈T of S where
St = {s | s ≤ t}. We say a chain from s to s′ is a sequence of sorts
(υ1, . . . , υk) such that υ1 = s and υk = s′ and (υi, υi+1) ∈ A for each i
in [k − 1]. Persistence ensures that each set in this partition is totally
ordered by ≤A. In particular, it is possible to show that there is at most
one chain ending at t of any length n contained in a set St for a top-sort t.
This also implies that each set in the partition is disjoint. Stratification
ensures that each set is finite. Finally note that the partition covers all
of S. If s is not in St for some top-sort t, then since s is not a top-sort,
there is some other sort s′ such that (s, s′) ∈ A and s′ is not in any set
of the partition. This process can iterated to build an infinite ascending
sequence of sorts. So {St}t∈T is in fact a partition.

Let λSt denote the pure system specified by

SλSt ≜ St

AλSt ≜ AλS ∩ (St × St)

RλSt ≜ RλS ∩ (St × St × St)

The axioms and rules of each system are clearly pairwise disjoint. They
also cover all axioms and rules of λS. For suppose that (s, s′) is an axiom
such that s ∈ St and s′ ∈ St′ for distinct top-sorts t and t′. Since s is not
a top-sort, there must be some other sort s′′ in St such that (s, s′′) ∈ A.
Then persistence implies that s′ = s′′, contradicting disjointness. The
same kind of argument applies for the rules. Finally, the fact that each

3This is a weaker notion of stratification than the one given by Barthe et al. [3], in part
because it is decoupled from the notion of non-dependence, and in part because their definition
does not account for infinite descending sequences of sorts.

7

St is totally ordered with respect to ≤A and is finite implies that each
system λSt is tiered. Therefore, we can view λS as the system

⊔
t∈T λSt.

Formally, they are isomorphic pure type systems.4

This fact can be easily lifted to generalized non-dependent systems.

Definition 8. A pure type system λS is generalized non-dependent if
it is persistent and weakly stratified and its rules are non-dependent, i.e., if
(s, s′) ∈ RλS then s ≥ s′. A tiered pure type system λS is non-dependent
its rules are non-dependent.

Corollary 1. A pure type system is generalized non-dependent if and only
if it is the disjoint union of non-dependent tiered pure type systems.

Roux and van Doorn [11] show that the (strong) normalization of a
disjoint union of pure type systems is equivalent to the (strong) normaliza-
tion of each of its individual summands. So on questions of normalization
regarding persistent, weakly stratified (e.g., generalized non-dependent)
pure type systems, it suffices to consider tiered systems.

One of the primary benefits of working in persistent systems in gen-
eral (and tiered systems in particular) is that derivable expressions can
be classified by the level in the system at which they are derivable. This
property is shown by defining a degree measure on expression and classi-
fying expressions according to their degree. This result is due to Berardi
[5], and the presentation here roughly follows the same course.

Definition 9. The degree of an expression is given according to the fol-
lowing function deg : T → N.

deg(si) ≜ i+ 1

deg(six) ≜ i− 1

deg(ΠxA. B) ≜ deg(B)

deg(λxA. M) ≜ deg(M)

deg(MN) ≜ deg(M)

Lemma 9. (Classification) Let λS be an n-tiered pure type system. For
any expression A, the following hold.

• degA = n+ 1 if and only if A = sn.

• degA = n if and only if Γ ⊢λS A : sn for some context Γ.

• For i ∈ [n − 1], we have degA = i if and only if Γ ⊢λS A : B and
Γ ⊢λS B : si+1 for some context Γ and expression B.

In particular, for context Γ and expressions M and A, if Γ ⊢ M : A then
degA = degM + 1.

Finally, a couple meta-theoretic lemmas specific to the systems we will
be considering. The first contains some useful facts about degree. See the
presentation by Barendregt [2] for proofs in the 2-tiered case.

4The definition of a pure type system homomorphism is as one might expect, see [11] for
more details.

8

Lemma 10. Let λS be a tiered pure type system and let A and B be
expressions derivable in λS.

• If deg(B) = j − 1 then

deg(A[B/sjx]) = deg(A)

• If A ↠β B, then degA = degB.

And last, the main lemma about non-dependent systems. One of the
tricky aspects of working with dependencies is that they can introduce
sub-expressions of a lower degree than the expression itself. This makes
it very difficult to reverse induct on degree, which is an important proof
technique for these systems. We won’t need the full version of this lemma,
just the simplified version which says that the degree of variables appear-
ing in an expression must be at least that of the expression itself.

Lemma 11. Let λS be a non-dependent tiered pure type system. For any
expression A, if a variable sjx appears free in A, then j > deg(A).

3 The Generalized Thunkification Trans-
lation

Xi’s thunkification translation [14] was introduced as a simpler approach
to deriving strong normalization from weak normalization in typed lambda
calculi, as compared to the CPS translation of Sørensen [12]. Roughly
speaking, rather than passing continuations, Xi’s translation pervasively
thunkifies expressions, using uninterpreted padding functions to store ad-
ditional sub-expression information in the evaluation of thunkified ex-
pressions. This allows for expressions to be mapped into the λI-calculus,
where strong normalization is more readily proved from weak normaliza-
tion. Sørensen’s translation was subsequently generalized by Barthe et al.
to generalized non-dependent, clean, negatable pure type systems [3]. In
this section, we extend Xi’s translation by analogy. This yields a simple
alternative proof of the main result of Barthe et al.

Without loss of generality, we work with a fixed n-tiered pure type
system λS. We present two families of translations, {ρi}i∈[n] for types
and {τi}i∈[n] for terms.

3.1 The Type-Level Translation

For the type-level translation, we need a distinguished unit type ⊥i for
each sort si. This is the type of the value passed to a thunkified term to
evaluate it. In the case of s1, this requires an additional type variable in
the context.

Definition 10. For i ∈ [2 . . . n], let ⊥i denote si−1 and let ⊥1 be a
distinguished variable. Also let ∆1 and ∆2 denote the context (⊥1 : s1)
and let ∆i denote the empty context in all other cases.5

5We define ∆2 in this way because we want that in all contexts ∆j where j ≥ 2, the
expression ⊥j−1 is derivable. This will play a similar role to the variable I included in
contexts by Barthe et al. (Definition 3.2, [3]).

9

The family of translations {ρi}i∈[n] gives the types of thunkified terms.
This means pervasively replacing each type A where deg(A) = i with its
corresponding thunkified form, i.e., ⊥i → A. For notational convenience,
let Tj denote the set {M ∈ T | deg(M) = j} and let T≥j denote the set
{M ∈ T | deg(M) ≥ j}.
Definition 11. For each index i, let the functions ρi : T≥i → T and
ρ′i : T≥i → T be given simultaneously as follows.

ρi(sj) ≜ sj (where j ≥ i)

ρi(x) ≜ x

ρi(ΠxA. B) ≜ Πxρ′i(A). ρi(B)

ρi(λx
A. M) ≜ λxρi(A). ρi(M)

ρi(MN) ≜ ρi(M)ρi(N)

ρ′i(A) ≜

{
⊥i → ρi(A) deg(A) = i

ρi(A) otherwise

These type-level translations are required to commute with substitu-
tion and preserve β-equivalence. These two features will be necessary for
translating application and conversion inferences in the next section. The
following two lemmas are standard.

Lemma 12. (ρi and ρ′i commute with substitution) For index i, variable
sjx and expressions M and N where deg(N) = j − 1 the following hold.

• ρi(M [N/sjx]) = ρi(M)[ρi(N)/sjx]

• ρ′i(M [N/sjx]) = ρ′i(M)[ρi(N)/sjx]

Proof. We prove both simultaneously by induction on the structure of
M . To start, in the case of ρ′i, if deg(M) = i then by Lemma 10,
deg(M [N/x]) = i as well. So

ρ′i(M [N/x]) = ⊥i → ρi(M [N/x])

= ⊥i → ρi(M)[ρi(N)/x]

= ρ′i(M)[ρi(N)/x]

where the second equality follows from the inductive hypothesis. And if
deg(M) ̸= i, then

ρ′i(M [N/x]) = ρi(M [N/x])

= ρi(M)[ρi(N)/x]

= ρ′i(M)[ρi(N)/x]

So we can proceed by induction on M for the case of ρi. The cases in
which M is a sort or a variable are straightforward. The following are the
cases for Π-expressions and λ-expressions.

10

Π-Expression. If M is of the form ΠyA. B then

ρi((ΠyA. B)[N/x]) = ρi(ΠyA[N/x]. B[N/x])

= Πyρ′i(A[N/x]). ρi(B[N/x])

= Πyρ′i(A)[ρi(N)/x]. ρi(B)[ρi(N)/x]

= ρi(ΠyA. B)[ρi(N)/x]

λ-Expression. If M is of the form λyA. P then

ρi((λy
A. P)[N/x]) = ρi(λy

A[N/x]. P [N/x])

= λyρi(A[N/x]. ρi(P [N/x])

= λyρi(A)[ρi(N)/x]. ρi(P)[ρi(N)/x]

= ρi(λy
A. P)[ρi(N)/x]

The case that M is an application is similar.

Lemma 13. (ρi and ρ′i preserve beta-reductions) For index i and deriv-
able expressions M and N , if M →β N then ρi(M) →β ρi(N) and
ρ′i(M) →β ρ′i(N). In particular, if M =β N then ρi(M) =β ρi(N) and
ρ′i(M) =β ρ′i(N).

Proof. The case of β-equality follows immediately from the case of one-
step β-reduction. We prove the one-step case for both ρi and ρ′i simulta-
neously by induction on the structure of the one-step β-reduction relation.
It is straightforward to show that the lemma holds in the case of ρ′i given
that it holds inductively for ρi. So we proceed by induction in the case of
ρi. In the case of a redex,

ρi((λx
A. M)N) = (λxρi(A). ρi(M))ρi(N)

→β ρi(M)[ρi(N)/x]

= ρi(M [N/x])

It is then straightforward to verify that this property holds up to congru-
ence.

Next, we prove that the type-level translation preserves typability.
This will ensure type derivations can be used in proving that the term-
level translation preserves typability, e.g., for translating the derivation of
Π-type judgments for abstraction. We will additionally need to translate
contexts in derivations, so we extend ρ′i to contexts as follows.

ρ′i(∅) ≜ ∆i

ρ′i(Γ, x : A) ≜

{
ρ′i(Γ), x : ρ′i(A) deg(A) ≥ i

ρ′i(Γ) otherwise

Note that, for convenience, we translate the empty context to be ∆i. We
also need to restrict our focus to systems for which it is possible define
types of the form ⊥i → A. This justifies the following definition.

11

Definition 12. Let λS be a tiered pure type system.

• A sort sj is relevant if (si, sj) ∈ RλS for some sort si.

• A sort sj is negatable if (sj , sj) ∈ RλS.

• λS is negatable if all relevant sorts are negatable.

Lemma 14. (ρi and ρ′i preserve typability) Let λS be a non-dependent
tiered pure type systems. For index i, context Γ, and expressions M and
A, if si is negatable then the following hold.

1. If Γ ⊢λS M : A and degM ≥ i then ρ′i(Γ) ⊢λS ρi(M) : ρi(A).

2. If Γ ⊢λS A : sj and degA ≥ i then ρ′i(Γ) ⊢λS ρ′i(A) : sj.

Proof. We prove both simultaneously by induction on the structure of
derivations. For item 2, note that by item 1, we have the inference ρ′i(Γ) ⊢
ρi(A) : sj . So if degA ̸= i, we’re done, and otherwise we have

ρ′i(Γ) ⊢ ⊥i : si ρ′i(Γ) ⊢ ρi(A) : si

ρ′i(Γ) ⊢ ⊥i → ρi(A) : si

Note that this judgment is derivable since si is negatable.
For item 1, we proceed with each case. The case in which the derivation

is a single axiom is straightforward.
Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : sj

Γ, x : A ⊢ x : A

where j ≥ i + 1. Note that ρ′i(A) = ρi(A) since deg(A) > i. So by the
inductive hypothesis, we have

ρ′i(Γ) ⊢ ρi(A) : sj

ρ′i(Γ), x : ρi(A) ⊢ x : ρi(A)

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj

Γ, x : B ⊢ M : A

By the inductive hypothesis, ρ′i(Γ) ⊢ ρi(M) : ρi(A), so if deg(B) ≤ i, then
we’re done. Otherwise, we have

ρ′i(Γ) ⊢ ρi(M) : ρi(A) ρ′i(Γ) ⊢ ρ′i(B) : sj

ρ′i(Γ), x : ρ′i(B) ⊢ ρi(M) : ρi(A)

where the right antecedent judgment also comes from the inductive hy-
pothesis.
Product Type Formation. If the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : sk

Γ ⊢ ΠxA. B : sk

then by the inductive hypothesis, we have

12

ρ′i(Γ) ⊢ ρ′i(A) : sj ρ′i(Γ), x : ρ′i(A) ⊢ ρi(B) : sk

ρ′i(Γ) ⊢ Πxρ′i(A). ρi(B) : sk

where k ≥ i. Note we can apply the inductive hypothesis to the left
antecedent judgment since deg(A) ≥ deg(B) by the non-dependence of
λS and so

deg(A) ≥ deg(ΠxA. B) ≥ i

Abstraction. Suppose the last inference is of the form

Γ, x : A ⊢ M : B Γ ⊢ ΠxA. B : sj

Γ ⊢ λxA. M : ΠxA. B

Since deg(M) = deg(λxA. M) ≥ i, we have deg(B) > i, and since λS
is non-dependent, we have deg(A) ≥ deg(B) > i. In particular, ρ′i(A) =
ρi(A). Therefore, we have

ρ′i(Γ), x : ρi(A) ⊢ ρi(M) : ρi(B) ρ′i(Γ) ⊢ Πxρi(A). ρi(B) : sj

ρ′i(Γ) ⊢ λxρi(A). ρi(M) : Πxρi(A). ρi(B)

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

Since λS is non-dependent, degA ≥ degB > degM ≥ i and ρ′i(A) =
ρi(A). So by the inductive hypothesis we have

ρ′i(Γ) ⊢ ρi(M) : Πxρi(A). ρi(B) ρ′i(Γ) ⊢ ρi(N) : ρi(A)

ρ′i(Γ) ⊢ ρi(M)ρi(N) : ρi(B)[ρi(N)/x]

where ρi(B)[ρi(N)/x] = ρi(B[N/x]) by Lemma 12.
Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj

Γ ⊢ M : B

where j ≥ i and A =β B. By the inductive hypothesis, we have

ρ′i(Γ) ⊢ ρi(M) : ρi(A) ρ′i(Γ) ⊢ ρi(B) : sj

ρ′i(Γ) ⊢ ρi(M) : ρi(B)

where ρi(A) =β ρi(B) by Lemma 13.

13

3.2 The Term-Level Translation

Next we define the translation of terms. In addition to the extra type
information in ∆i, we also need what amount to uninterpreted padding
variables in the context for collecting expressions which are arguments to
λ-terms. These will be used to ensure that translated terms are λI-terms
in the appropriate sense (see Definition 17). The padding variables are
made to be polymorphic when possible, but the type may need to be more
strictly specified when this is not possible. To more carefully make this
distinction, we need the following definition.

Definition 13. Let λS be a tiered pure type system.

• A rule (si, sj) is generalizable if (si+1, sj) ∈ RλS.

• A rules (si, sj) is harmless if neither (sk, sj) nor (sk, sj−1) are in
RλS when k > j.

• λS is clean if all its rules are generalizable or harmless.

Generalizability corresponds the inclusion of rules for typing polymor-
phic padding variables, and harmlessness ensures that, when those rules
are not included, the padding variables never become untypable because a
variable it depends on leaves the context. See Barthe et al. (Remark 4.1,
[3]) for more exposition on the motivations of this definition. We collect
the padding variables in a single context that is dependent on the subject
of the judgment we are translating.

Definition 14. For each index i, define Υi,M with respect to the structure
of M as follows.

Υi,sj ≜ ∅

Υi,x ≜ ∅

Υi,ΠxA. B ≜ Υi,A,Υi,B

Υi,λxA. M ≜ px : αi,A,Υi,M

Υi,MN ≜ Υi,M ,Υi,N

where

αi,A =

{
Πtsdeg(A) . t → ⊥i → ⊥i (deg(A), i) is generalizable

ρ′i(A) → ⊥i → ⊥i (deg(A), i) is harmless

We will write ⟨M,N⟩ρ′i(A) for both pxρ
′
i(A)MN and pxMN (i.e., for

each case of αi,A) when there is no fear of ambiguity.
The context of padding variables appears after the translation of the

given context, as it may depend on some of the declarations in it, so to
translate abstraction or product type formations, we need some declara-
tions to commute with the context of padding variables. The following
ensures that this is possible.

Lemma 15. If (sj , si) or (sj , si−1) are in RλS, then no undistinguished
variables (i.e., ignoring ⊥i) of degree j − 1 (i.e., of the form sjx) can
appear free in Υi,M for any term M where deg(M) = i− 1.

14

Proof. By induction on the structure of M . The only interesting case is
if M is of the form λxA. N and (deg(A), i) is harmless. If skx appears
free in ρ′i(A), then it must also appear free in A (this is straightforward
to verify), and so by Lemma 11, it must be that k > deg(A). But by
harmlessness, j ≤ deg(A), so k ̸= j.

We now define the term-level translation. The translation is fairly
simple, with the exception of two cases which are discussed in remark
following the definition.

Definition 15. For each index i, define the functions τi : Ti−1 → T and
τ ′
i : Ti−1 → T simultaneously as follows.

τi(si−2) ≜ •i
τi(

six) ≜ six•i

τi(ΠxA. B) ≜

{
τ ′
i(A)⊥i−1 → τi(B) deg(A) = i− 1

Πxρ′i(A). τi(B) otherwise

τi(λx
A. M) ≜ λxρ′i(A). τ ′

i(M)⟨x, •i⟩ρ′i(A)

τi(MN) ≜

{
τi(M)τ ′

i(N) deg(N) = i− 1

τi(M)ρi(N) otherwise

τ ′
i(M) ≜ λ •⊥i

i . τi(M)

where j ≥ i− 1 and •i is a distinguished variable.

We are taking advantage of a couple representation tricks in this trans-
lation. For the case of sorts, we use the fact that ⊥i = si−1 and for the
case of Π-types, we use the fact that ∆i ⊢ ⊥i−1 : ⊥i if i ≥ 2. These
tricks are used to maintain one of the most important features of this
translation, i.e., that τ ′(M) is linear in •i on terms of degree i− 1.

Lemma 16. For any term M where deg(M) = i − 1, the variable •i
appears free exactly once in τ(M).

Finally, we show that the term-level translations preserve typability.

Lemma 17. (τi and τ ′
i preserve typability) Let λS be a clean tiered pure

type system and suppose that si is negatable. For any context Γ and ex-
pressions M and A, if Γ ⊢ M : A and Γ ⊢ A : si, then

1. ρ′i(Γ),Υi,M , •i : ⊥i ⊢ τi(M) : ρi(A)

2. ρ′i(Γ),Υi,M ⊢ τ ′
i(M) : ρ′i(A)

Proof. We prove both simultaneously by induction on the structure of
derivations. For item 2, suppose that

ρ′i(Γ),Υi,M , •i : ⊥i ⊢ τi(M) : ρi(A)

By Lemma 14 and thinning (Lemma 4) we can derive

ρ′i(Γ),Υi,M ⊢ ⊥i → ρi(A) : si

which means by abstraction we can derive

ρ′i(Γ),Υi,M ⊢ λ •⊥i
i . τi(M) : ⊥i → ρi(A)

15

For item 1, we consider each case.
Axiom. If the derivation is of the form

⊢ si−2 : si−1

then of course ∆i, •i : ⊥i ⊢ •i : ⊥i, noting that

⊥i = si−1 = ρi(si−1)

Variable Introduction. Suppose the last derivation is of the form

Γ ⊢ A : si
Γ, x : A ⊢ x : A

By Lemma 14 and thinning (Lemma 4), we have the inference

ρ′i(Γ),Υi,x ⊢ ρ′i(A) : si

ρ′i(Γ),Υi,x, x : ρ′i(A) ⊢ x : ρ′i(A)

Since Υi,x = ∅, we can move it in the context freely and apply weakening
to derive

ρ′i(Γ), x : ρ′i(A),Υi,x, •i : ⊥i ⊢ x : ρ′i(A)

It is straightforward to then derive by application

ρ′i(Γ), x : ρ′i(A),Υi,x, •i : ⊥i ⊢ x•i : ρi(A)

Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj

Γ, x : B ⊢ M : A

If j < i, then we have

ρ′i(Γ),Υi,M , •i : ⊥i ⊢ τi(M) : ρi(A)

directly by the inductive hypothesis. Otherwise, B is in the domain of ρ′i
and by the inductive hypothesis, Lemma 14, and thinning (Lemma 4), we
have

ρ′i(Γ),Υi,M , •i : ⊥i ⊢ τi(M) : ρi(A)

ρ′i(Γ),Υi,M , •i : ⊥i ⊢ ρ′i(B) : sj

ρ′i(Γ),Υi,M , •i : ⊥i, x : ρ′i(B) ⊢ τi(M) : ρi(A)

And since •i does not appear free in ρ′i(B) and nor do any of the variables
in Υi,M , by permutation (Lemma 5) we can also derive

ρ′i(Γ), x : ρ′i(B),Υi,M , •i : ⊥i,⊢ τi(M) : ρi(A)

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, sjx : A ⊢ B : si−1

Γ ⊢ ΠxA. B : si−1

16

If j = i− 1, then by the inductive hypothesis, we can derive

ρ′i(Γ),Υi,A, •i : ⊥i ⊢ τ ′
i(A) : ⊥i → si−1

and since ⊢ ⊥i−1 : ⊥i and ⊥i−1 is derivable from ∆i, we can derive by
application

ρ′i(Γ),Υi,A, •i : ⊥i ⊢ τ ′
i(A)⊥i−1 : si−1

which, with thinning, gives us the inference

ρ′i(Γ),Υi,A,Υi,B , •i : ⊥i ⊢ τ ′
i(A)⊥i−1 : si−1

ρ′i(Γ),Υi,A,Υi,B , •i : ⊥i ⊢ τi(B) : si−1

ρ′i(Γ),Υi,A,Υi,B , •i : ⊥i ⊢ τi(A)′⊥i−1 → τi(B) : si−1

Otherwise, A is in the domain of ρi, and by Lemma 15, the variable sjx
does not appear free in Υi,B , so by permutation (Lemma 5), we can also
derive

ρ′i(Γ),Υi,B , •i : ⊥i,
sjx : ρ′i(A) ⊢ τi(B) : si−1

from which we have the inference

ρ′i(Γ),Υi,A,Υi,B , •i : ⊥i ⊢ ρ′(A) : sj

ρ′i(Γ),Υi,A,Υi,B , •i : ⊥i,
sjx : ρ′i(A),⊢ τi(B) : sk

ρ′i(Γ),Υi,A,Υi,B , •i : ⊥i ⊢ Πxρ′i(A). τi(B) : sk

where the first antecedent judgment is attained by Lemma 14 and thin-
ning.
Abstraction. Suppose the last inference is of the form

Γ, x : A ⊢ M : B Γ ⊢ ΠxA. B : si

Γ ⊢ λxA. M : ΠxA. B

By the inductive hypothesis,

ρ′i(Γ), x : ρ′i(A),Υi,M , •i : ⊥i ⊢ τ ′
i(M) : ⊥i → ρi(B)

Since (deg(A), i) ∈ RλS , it is either generalizable or harmless. In the first
case, it is possible to derive

∆i ⊢ Πtsdeg(A) . t → ⊥i → ⊥i : si

Otherwise, by Lemma 14 a and couple additional steps (including a use
of generation (Lemma 1)6), we can derive

ρ′i(Γ) ⊢ ρ′i(A) → ⊥i → ⊥i : si

so in both cases we can thin the above judgment to

ρ′i(Γ), x : ρ′i(A),Υi,λxA. M , •i : ⊥i ⊢ τ ′
i(M) : ⊥i → ρi(B)

Therefore, in a few steps we can derive

ρ′i(Γ), x : ρ′i(A),Υi,λxA. M , •i : ⊥i ⊢ ⟨x, •i⟩ρ′i(A) : ⊥i

which can be used in the application

6Alternatively, we can consider the system which includes Γ ⊢ A : sdeg(A) as an antecedent
judgment to abstraction, which is an equivalent system.

17

ρ′i(Γ), x : ρ′i(A),Υi,λxA. M , •i : ⊥i ⊢ τ ′
i(M) : ⊥i → ρi(B)

ρ′i(Γ), x : ρ′i(A),Υi,λxA. M , •i : ⊥i ⊢ ⟨x, •i⟩ρ′i(A) : ⊥i

ρ′i(Γ), x : ρ′i(A),Υi,λxA. M , •i : ⊥i ⊢ τ ′
i(M)⟨x, •i⟩ρ′i(A) : ρi(B)

Finally, since x does not appear free in Υi,λxA. M (Lemma 15), we can
also derive

∆i, ρ
′
i(Γ),Υi,λxA. M , •i : ⊥i, x : ρ′i(A) ⊢ τ ′

i(M)⟨x, •i⟩ρ′i(A) : ρi(B)

which can be used in the last abstraction

ρ′i(Γ),Υi,λxA. M , •i : ⊥i, x : ρ′i(A) ⊢ τ ′
i(M)⟨x, •i⟩ρ′i(A) : ρi(B)

ρ′i(Γ),Υi,λxA. M , •i : ⊥i ⊢ Πxρ′i(A). ρi(B) : sj

ρ′i(Γ),Υi,λxA. M , •i : ⊥i ⊢ τi(λx
A. M) : Πxρ′i(A). ρi(B)

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

If degN = i−1, then by the inductive hypothesis, Lemma 14, and thinning
we have

ρ′i(Γ),Υi,M ,Υi,N , •i : ⊥i ⊢ τi(M) : Πxρ′i(A). ρi(B)

ρ′i(Γ),Υi,M ,Υi,N , •i : ⊥i ⊢ τ ′
i(N) : ρ′i(A)

ρ′i(Γ),Υi,MN , •i : ⊥i ⊢ τi(M)τ ′
i(N) : ρi(B)[τ ′

i(N)/x]

By Lemma 11, the variable x does not appear free in ρi(B) in this case,
so ρi(B)[τ ′

i(N)/x] = ρi(B) = ρi(B[N/x]). In the other case, we have
degN ≥ i which implies N is in the domain of ρi, so we have

ρ′i(Γ),Υi,M ,Υi,N , •i : ⊥i ⊢ τi(M) : Πxρi(A). ρi(B)

ρ′i(Γ),Υi,M ,Υi,N , •i : ⊥i ⊢ ρi(N) : ρi(A)

ρ′i(Γ),Υi,MN , •i : ⊥i ⊢ τi(M)ρi(N) : ρi(B)[ρi(N)/x]

and ρi(B)[ρi(N)/x] = ρi(B[N/x]) by Lemma 12.
Conversion. Suppose the last inference is of the form.

Γ ⊢ M : A Γ ⊢ B : sj

Γ ⊢ M : B

where A =β B. By the inductive hypothesis, Lemma 14, thinning, and
the fact that ρi preserves β-equivalence (Lemma 13), we have

ρ′i(Γ),Υi,M , •i : ⊥i ⊢ τi(M) : ρi(A)

ρ′i(Γ),Υi,M , •i : ⊥i ⊢ ρi(B) : sj

ρ′i(Γ),Υi,M , •i : ⊥i ⊢ τi(M) : ρi(B)

18

3.3 Strong Normalization from Weak Normaliza-
tion

It remains to derive strong normalization from weak normalization for
non-dependent clean negatable tiered systems. This is in essense a rewrit-
ing of Xi’s proof in the framework of Barthe et al. by which, supposing
our system is weakly normalizing, we prove by reverse induction on i that
all terms in T≥i are strongly normalizing for every index i.

Definition 16. A non-dependent tiered pure type system λS is i-secure
if for all derivable expressions M , if deg(M) ≥ i, then M is strongly
normalizing.

The induction step splits into two cases, depending on whether the
sort with the index in question is negatable or irrelevant. By negatablity
of the system itself, these are the only two cases. The case of irrelevant
sorts is simple and handled directly by Barthe et al.

Lemma 18. (Lemma 5.19, [3]) Let λS be a non-dependent, weakly nor-
malizing, i-secure tiered pure type system. If si is irrelevant, then every
derivable expression M with deg(M) = i − 1 is strongly normalizing. In
particular, λS is (i− 1)-secure.

The second case is aided by two lemmas alluded to in the introduction.
First, it must be that our term-level translation maps expressions into
an appropriate generalization of the λI-calculus. This easy to verify by
looking at the way λ-expressions appear in the translation.

Definition 17. An expression M is an I-expression at level j if the
following hold.

• deg(M) ≥ j

• If λxA. N ⊂ M and deg(λxA. N) = j, then x appears free in N .

Lemma 19. Let λS a non-dependent negatable tiered pure type system.
For any derivable expression M with deg(M) = i−1, it follows that τi(M)
is an I-expression at level i− 1.

As proved by Barthe et al. this calculus has the same sort of conser-
vation theorem as one proved by Church and Rosser [6] for the standard
λI-calculus.

Lemma 20. (Lemma 5.16, [3]) Let λS be a non-dependent tiered pure
type system that is i-secure. Then for every I-expression M at level i− 1,
if M is weakly normalizing then it is strongly normalizing.

Next, it must be that the term-level translation preserves infinite re-
ductions paths. The proof of this will occupy the following subsection,
but taken together we have the implications

τi(M) is weakly normalizing ⇒ τi(M) is strongly normalizing

⇒ M is strongly normalizing

which we package as a single lemma.

Lemma 21. Let λS be a non-dependent, clean, negatable tiered pure type
systems. For any derivable expression M with deg(M) = i − 1, if τ ′

i(M)
is weakly normalizing then M is strongly normalizing.

19

Before proving path preservation, the missing component of the above
lemma, we can present the proof of the final result, which we have been
outlining thus far.

Theorem 1. Let λS be a non-dependent, clean, negatable n-tiered pure
type system. If λS is weakly normalizing then λS is strongly normalizing.

Proof. We prove by reverse induction on i (from n to 0) that λS is i-secure,
i.e., all expressions in T≥i are strongly normalizing. By the classification
lemma (Lemma 9), the only expressions of degree n are types and by the
top-sort lemma (Lemma 7) and non-dependence, they are generated at
most by sn−1 and Π-types using the rule (sn, sn) if it appears in RλS . It
is straightforward to verify that this set of types is strongly normalizing.
So suppose that λS is k-secure. By Lemma 18, if sk is irrelevant, then λS
is (k− 1)-secure. Otherwise, since λS is negatable, sk must be negatable.
Let M be a term in T≥k−1 derivable in λS. If deg(M) ≥ k, then M is
strongly normalizing by k-security. Otherwise, by Lemma 17, τk(M) is
derivable and so is weakly normalizing. So by Lemma 21, M is strongly
normalizing, and consequently, λS is (k − 1)-secure.

Preserving Infinite Reduction Paths

To prove that τi preserves infinite reduction paths, we show that the
length of the longest reduction from path starting at an expression M is
at most the length of the longest path from τi(M).

Definition 18. Let µ : T → N ∪ {∞} be the function which maps an
expression M to the length of the longest reduction sequence starting at
M (where µ(M) = ∞ if no such sequence exists).

First, we to know how τi interacts with substitution.

Lemma 22. For variable skx and expressions M and N where deg(M) =
i− 1 and deg(N) = k − 1, the following hold.

1. If k = i, then τi(M [N/skx]) ↞β τi(M)[τ ′
i(N)/skx].

2. If k > i, then τi(M [N/skx]) = τi(M)[ρi(N)/skx].

Proof. We prove item 1 by induction on the structure of M . The case in
which M is a sort is straightforward.
Variable. If M = six then

τi(
six[N/six]) = τi(N) ↞β τ ′

i(N)•i = τi(
six)[τ ′

i(N)/six]

Otherwise, M is of the form siy with y ̸= x and

τi(
siy[N/skx]) = τi(

siy) = τi(
siy)[τ ′

i(N)/skx]

Π-Expression. Suppose M is of the form ΠyA. B. If deg(A) = i− 1, then

τi((ΠyA. B)[N/x]) = τi(A[N/x])⊥i−1 → τi(B[N/x])

↞β τi(A⊥i−1)[τ
′
i(N)/x] → τi(B)[τ ′

i(N)/x]

= τi(ΠyA. B)[τ ′
i(N)/x]

20

Otherwise, note that if deg(A) > i − 1, then by Lemma 11, six does not
appear free in A and the free variables of ρ′i(A) are the same as those of
A, so

τi((ΠyA. B)[N/x]) = Πyρ′i(A[N/x]). τi(B[N/x])

= Πyρ′i(A). τi(B[N/x])

↞β Πyρ′i(A). τi(B)[τ ′
i(N)/x]

= Πyρ′i(A)[τ ′
i(N)/x]. τi(B)[τ ′

i(N)/x]

= τi(ΠyA. B)[τ ′
i(N)/x]

The cases that M is a λ-terms or an application are similar. Further-
more the proof of item 2 is similar as well.

Now for the upper bound. We’ll need a generalization of a basic result
from the theory of the untyped lambda calculus (see [14]).

Lemma 23. For any expressions A, M , N1, . . . , Nk and variable x,

µ((λxA. M)N1 . . . Nk) ≤ 1 + µ(A) + µ(N1) + µ(M [N1/x]N2 . . . Nk)

Lemma 24. Let λS be non-dependent tiered pure type system where si is
negatable. For any expression A with deg(A) ≥ i,

µ(A) ≤ µ(ρi(A)) = µ(ρ′i(A))

Proof. By induction on the structure of A. For illustration, we consider
the case that A is a Π-term.
Π-Term. Suppose that M is of the form ΠxA. N . By the inductive hy-
pothesis, µ(A) ≤ µ(ρi(A)) = µ(ρ′i(A)) and µ(B) ≤ µ(ρi(B)). Therefore,

µ(ΠxA. B) = µ(A) + µ(B)

≤ µ(ρ′i(A)) + µ(ρi(B))

= µ(Πxρ′i(A). ρi(B))

Lemma 25. Let λS be a weakly normalizing non-dependent tiered pure
type system where si is negatable. For any derivable expression M with
deg(M) = i− 1, we have

µ(M) ≤ µ(τi(M)) = µ(τ ′
i(M))

Proof. By induction on µ(τi(M)) and the structure of M , lexicographi-
cally ordered. The cases in which M is a sort, a variable, or a Π-type are
straightforward.
λ-Expression. Suppose M is of the form λxA. N . By Lemma 24, µ(A) ≤
µ(ρ′i(A)) and by the inductive hypothesis, µ(N) ≤ µ(τi(N)) = µ(τ ′

i(N)),
so

µ(λxA. N) = µ(A) + µ(N)

≤ µ(ρ′i(A)) + µ(τi(N)) = µ(ρ′i(A)) + µ(τ ′
i(N))

21

And since µ(τ ′
i(N)) ≤ µ(τ ′

i(N)⟨x, •i⟩ρ′i(A)) we also have that µ(λxA. N) ≤
µ(τi(λx

A. N)).
Application. We consider two cases. First suppose that M is of the form
xN1 . . . , Nk where k ≥ 0. In what follows, let

πi(M) =

{
τ ′
i(M) degM = i− 1

ρi(M) degM ≥ i

Then

µ(xN1 . . . Nk) =

k∑
j=1

µ(Nj)

≤
k∑

j=1

µ(πi(Nj))

= µ(τ ′
i(xN1 . . . Nk))

Otherwise, M is of the form (λxA. P)N1 . . . Nk with deg(P) = i − 1.
Consider the reduction sequence

τi((λx
A. P)N1 . . . Nk)

= (λxρ′i(A). τ ′
i(P)⟨x, •i⟩ρ′i(A))πi(N1), . . . πi(Nk)

↠β (λxnf(ρ′i(A)). τ ′
i(P)⟨x, •i⟩ρ′i(A))πi(N1), . . . πi(Nk)

→β τ ′
i(P)[πi(N1)/x]⟨πi(N1), •i⟩ρ′i(A)πi(N2) . . . πi(Nk)

↠β τ ′
i(P [N1/x])⟨πi(N1), •i⟩ρ′i(A)πi(N2) . . . πi(Nk)

↠β τ ′
i(P [N1/x])⟨nf(πi(N1)), •i⟩ρ′i(A)πi(N2) . . . πi(Nk)

→β τi(P [N1/x])[⟨nf(πi(N1)), •i⟩ρ′i(A)/•i]πi(N2) . . . πi(Nk)

where nf(M) denotes the normal form of M , which is guaranteed to exist
by the assumption of weak normalization. Note that the fifth line follows
from Lemma 22. This reduction has length at least

2 + µ(ρ′i(A))

+ µ(πi(N))

+ µ(τi(P [N1/x][⟨nf(N1), •i⟩ρ′i(A)/•i])πi(N2) . . . πi(Nk))

and is upper bounded by µ(τi(M)). Furthermore,

µ(τi((P [N1/x])N2 . . . Nk))

= µ(τi(P [N1/x])πi(N2) . . . πi(Nk))

≤ µ(τi(P [N1/x][⟨nf(N1), •i⟩ρ′i(A)/•i])πi(N2) . . . πi(Nk))

since •i can be replaced with ⟨nf(N1), •i⟩ρ′i(A) in any reduction sequence
starting at τi(P [N1/x])πi(N2) . . . πi(Nk). So applying the inductive hy-
pothesis, the above expression is lower bounded by

1 + µ(A) + µ(N) + µ((P [N1/x])N2 . . . Nk)

22

Note that this is why we cannot simply induct over the structure of M ,
as we need to be able to say that

µ((P [N1/x])N2 . . . Nk) ≤ µ(τi((P [N1/x])N2 . . . Nk))

Finally, by Lemma 23, this implies µ(M) ≤ µ(τi(M)).

4 Conclusions

I’ve presented a proof that weak normalization implies strong normal-
ization in non-dependent clean negatable tiered pure type systems via
thunkification. ‘Tiered’ can be replaced with ‘generalized non-dependent’
by considering a disjoint unions of tiered systems. The obvious ques-
tion that remains is whether it is possible to prove strong normalization
from weak normalization for all non-dependent tiered systems. Removing
cleanliness would seem to require a different form of padding gadget. One
potential place to look for this is Loader’s translation [9], which attempts
to derive padding terms on the fly from a collection of basic padding
terms. Regardless, my hope is that, in its simplicity, this proof based on
thunkification is amenable to modifications and improvements.

References

[1] Henk Barendregt. Introduction to generalized type systems. Journal
of Functional Programming, 1(2):125–154, 1991.

[2] Henk Barendregt. Lambda Calculi with Types. In Handbook of Logic
in Computer Science, Volume II, pages 117–309. Oxford University
Press, 1993.

[3] Gilles Barthe, John Hatcliff, and Morten Heine Sørensen. Weak nor-
malization implies strong normalization in a class of non-dependent
pure type systems. Theoretical Computer Science, 269(1-2):317–361,
2001.

[4] Stefano Berardi. Towards a mathematical analysis of the Coquand-
Huet calculus of constructions and the other systems in Barendregt’s
cube. Technical report, Carnegie Mellon University, Universita di
Torino, 1988.

[5] Stefano Berardi. Type Dependence and Constructive Mathematics.
PhD thesis, Dipartimento di Informatica, Torino, Italy, 1990.

[6] Alonzo Church and J. Barkley Rosser. Some Properties of Conver-
sion. Transactions of the American Mathematical Society, 39(3):472–
482, 1936.

[7] Jean-Yves Girard. Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. PhD thesis, Éditeur
inconnu, 1972.

[8] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. A Modern
Perspective on Type Theory: From its Origins until Today, volume 29
of Applied Logic Series. Springer, 2004.

23

[9] Ralph Loader. Normalization by Calculation. Strong normalization
from weak normalization proof, 1995.

[10] Zhaohui Luo. An extended calculus of constructions. PhD thesis,
University of Edinburgh, 1990.

[11] Cody Roux and Floris van Doorn. The Structural Theory of Pure
Type Systems. In Rewriting and Typed Lambda Calculi, pages 364–
378. Springer, 2014.

[12] Morten Heine Sørensen. Strong Normalization fromWeak Normaliza-
tion in Typedλ-Calculi. Information and Computation, 133(1):35–71,
1997.

[13] Jan Terlouw. Een nadere bewijstheoretische analyse van GSTT’s.
Technical report, Department of Computer Science, University of
Nijmege, 1989.

[14] Hongwei Xi. Weak and Strong Beta Normalisations in Typed
Lambda-Calculi. In Proceedings of Typed Lambda Calculi and Ap-
plications, volume 1210 of Lecture Notes in Computer Science, pages
390–404. Springer, 1997.

24

	Introduction
	Preliminaries
	Meta-Theory
	Tiered Pure Type Systems

	The Generalized Thunkification Translation
	The Type-Level Translation
	The Term-Level Translation
	Strong Normalization from Weak Normalization

	Conclusions

