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In the extract printed below, Turing shows that every formula of Church’s
simple type theory has a normal form. The extract is the first page of an un-
published (and incomplete) typescript entitled ‘Some theorems about Church’s
system’. (Turing left his manuscripts to me; they are deposited in the library
of King’s College, Cambridge). An account of this system was published by
Church in ‘A formulation of the simple theory of types’ (J. Symbolic Logic 5
(1940), pp. 56-68). Church had previously described the system in lectures
given at Princeton (1937-38) which Turing attended; he was a graduate student
at Princeton 1936-1938. He is mentioned as having contributed to results about
the system in footnote 12 of Church’s paper. In an undated letter to M.H.A.
Newman (which must have been written early in 1942) Turing outlines the con-
tents of his proposed paper (including the normal form theorem); he refers to it
as ‘forthcoming’ in his paper ‘The use of dots as brackets in Church’s system’ (J.
Symbolic Logic 7 (1942), pp. 146-156, received 17 June 1942). For some further
details about Turing’s work on type theory, see my paper ‘The simple theory of
types’ in Logic Colloqium ‘76, Ed. R.O. Gandy & J.M.E. Hyland, North Hol-
land Pub. Co. Amsterdan 1977, pp. 173-181. Thus Turing’s proof antedates by
many years any published proof of the theorem.

Turing’s proof depends on the rather obvious remark that if one reduces
the rightmost (or an innermost) redex (λxβAα)Bβ whose head λxβAα is of
highest type in a formula F , then the resulting formula has fewer redexes with
head of type (αβ). The theorem follows by use of simple induction with a
π0
1 predicate, or by transfinite induction up to ω2 with a primitive recursive

predicate. (Turing’s use of an ordering of formulae with order-type ωω is not
necessary). A very meticulous account of this method of proof is given by P.B.
Andrews in ‘Resolution in type theory’ (J. Symbolic Logic 36 (1971), pp. 414-
432). Andrews writes in a footnote: ‘This proposition is part of the folklore of
type-theoretic λ-conversion. The author first heard the idea of the proof given
here from Dr. James R. Guard’. The same method of proof, applied to the
contractions of proofs in systems of natural reduction, is used by Pravitz in his
Natural Deduction: a proof-theoretical study (Stockholm 1965).

The earliest published proof known to me is in Curry and Feys’ book Com-
binatory Logic (North Holland Pub. Co. Amsterdam 1958; 2nd printing 1968).
The normal form theorem is included in their Theorem 9 on page 340. The
proof depends on the ‘elimination theorem’ (Theorem 5, p. 326), which may
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be viewed as sort of cut-elimination theorem for the theory of functionality. In
a very loose sense, one may say that Genzen’s Hauptsatz was the first normal
form theorem.

I should like to think J.P. Seldin for his help in providing references.

The Extract

Proof that every type formula has a normal form

We will well-order the formulae of Church’s system as follows. We say that
the formula has an unreduced part of order n if it has a part of form (λxαAβ)Bα

where βα is of length n. If we wish to decide which of two formulae precedes
we find out what is the highest order of any unreduced part in each. The
formula which has an unreduced part of higher order than any part of the other
comes later. Suppose however that the maximum orders are the same, n say,
then the only which has the more unreduced parts of order n comes later. But
these numbers may also be equal, and in this case we compare the number of
unreduced parts of order n− 1, and if we fail with these we go to those of order
n − 2. If eventually there is a difference the formula with the greater number
of unreduced parts comes later, if however the numbers remain the same to the
end, i.e. as far as those of order 1 then the longer formula comes later. It is not
difficult to see that this is a well ordering of formulae, of type ωω.

Now when we perform a reduction on a formula, in which we reduce one
of the unreduced parts of highest order, we necessarily decrease the number of
unreduced parts of the highest order, for we destroy one and we do not create
any more: this at any will be the case if we choose the unreduced part of highest
order whose λ lies farthest to the right. We therefore reduce the formula to one
which is earlier in the sequence, and as the sequence is well-ordered the sequence
of reductions must come to an end.

This has been copied verbatim: ‘rate’ should be inserted after ‘any’ in the last
line but four.
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